Development of Tomato Leaf Disease Detection using Single Shot Detector (SSD) Mobilenet V2

S. G. Brucal, Luigi Carlo De Jesus, Jex De Los Santos, Mariel Joy Mendoza, Khyrstelle Harion, Guiliane Altaire Reyes, Dominador Nevalasca, Jv Kay Reyes
{"title":"Development of Tomato Leaf Disease Detection using Single Shot Detector (SSD) Mobilenet V2","authors":"S. G. Brucal, Luigi Carlo De Jesus, Jex De Los Santos, Mariel Joy Mendoza, Khyrstelle Harion, Guiliane Altaire Reyes, Dominador Nevalasca, Jv Kay Reyes","doi":"10.25147/ijcsr.2017.001.1.136","DOIUrl":null,"url":null,"abstract":"Purpose – To create a software prototype for the tomato leaf disease detection model to identify the tomato leaf condition and detect and identify the disease present in it. Methodology – Using the TensorFlow 2 Object Detection API, the object detection model used is the Single Shot Detector (SSD) MobileNetV2 Object Detection model. The feature extractor used is the pre-trained TF2 MobileNetV2 model with the ImageNet dataset providing trained weights that allows feature extraction. Combining the pre-trained TF2 MobileNetV2 and Convolutional Neural Network (CNN) for SSD, the result object localization and image classification with SSD, and feature extractor pre-trained model. Result – When training the model, at the 1300th step out of 6000 steps, the learning rate spiked from 0 to 0.7999. It then stabilized from 0.7999 and gradually decreased to 0.7796. After training, the total loss of the model is 46.95% for evaluation and 45.32% for training results. The average recall of the model is","PeriodicalId":33870,"journal":{"name":"International Journal of Computing Sciences Research","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Sciences Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25147/ijcsr.2017.001.1.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose – To create a software prototype for the tomato leaf disease detection model to identify the tomato leaf condition and detect and identify the disease present in it. Methodology – Using the TensorFlow 2 Object Detection API, the object detection model used is the Single Shot Detector (SSD) MobileNetV2 Object Detection model. The feature extractor used is the pre-trained TF2 MobileNetV2 model with the ImageNet dataset providing trained weights that allows feature extraction. Combining the pre-trained TF2 MobileNetV2 and Convolutional Neural Network (CNN) for SSD, the result object localization and image classification with SSD, and feature extractor pre-trained model. Result – When training the model, at the 1300th step out of 6000 steps, the learning rate spiked from 0 to 0.7999. It then stabilized from 0.7999 and gradually decreased to 0.7796. After training, the total loss of the model is 46.95% for evaluation and 45.32% for training results. The average recall of the model is
利用单次射击检测器(SSD) Mobilenet V2进行番茄叶病检测的开发
目的-创建番茄叶片病害检测模型的软件原型,用于识别番茄叶片状况并检测和识别其中存在的病害。方法-使用TensorFlow 2对象检测API,使用的对象检测模型是单镜头检测器(SSD) MobileNetV2对象检测模型。使用的特征提取器是预先训练的TF2 MobileNetV2模型,ImageNet数据集提供训练后的权重,允许特征提取。结合预训练的TF2 MobileNetV2和卷积神经网络(CNN)的SSD,结果对象定位和图像分类与SSD,特征提取器预训练模型。结果-当训练模型时,在6000步中的第1300步,学习率从0飙升至0.7999。然后从0.7999稳定下来,逐渐下降到0.7796。经过训练后,模型的评估总损失46.95%,训练结果总损失45.32%。该车型的平均召回率为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
25
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信