Machine-Learning-Based Prediction of Client Distress From Session Recordings.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-05-01 Epub Date: 2023-06-01 DOI:10.1177/21677026231172694
Patty B Kuo, Michael J Tanana, Simon B Goldberg, Derek D Caperton, Shrikanth Narayanan, David C Atkins, Zac E Imel
{"title":"Machine-Learning-Based Prediction of Client Distress From Session Recordings.","authors":"Patty B Kuo, Michael J Tanana, Simon B Goldberg, Derek D Caperton, Shrikanth Narayanan, David C Atkins, Zac E Imel","doi":"10.1177/21677026231172694","DOIUrl":null,"url":null,"abstract":"<p><p>Natural language processing (NLP) is a subfield of machine learning that may facilitate the evaluation of therapist-client interactions and provide feedback to therapists on client outcomes on a large scale. However, there have been limited studies applying NLP models to client outcome prediction that have (a) used transcripts of therapist-client interactions as direct predictors of client symptom improvement, (b) accounted for contextual linguistic complexities, and (c) used best practices in classical training and test splits in model development. Using 2,630 session recordings from 795 clients and 56 therapists, we developed NLP models that directly predicted client symptoms of a given session based on session recordings of the previous session (Spearman's rho =0.32, p<.001). Our results highlight the potential for NLP models to be implemented in outcome monitoring systems to improve quality of care. We discuss implications for future research and applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21677026231172694","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural language processing (NLP) is a subfield of machine learning that may facilitate the evaluation of therapist-client interactions and provide feedback to therapists on client outcomes on a large scale. However, there have been limited studies applying NLP models to client outcome prediction that have (a) used transcripts of therapist-client interactions as direct predictors of client symptom improvement, (b) accounted for contextual linguistic complexities, and (c) used best practices in classical training and test splits in model development. Using 2,630 session recordings from 795 clients and 56 therapists, we developed NLP models that directly predicted client symptoms of a given session based on session recordings of the previous session (Spearman's rho =0.32, p<.001). Our results highlight the potential for NLP models to be implemented in outcome monitoring systems to improve quality of care. We discuss implications for future research and applications.

基于机器学习的会话记录客户压力预测。
自然语言处理(NLP)是机器学习的一个分支领域,可以促进对治疗师与客户互动的评估,并向治疗师提供大规模的客户结果反馈。然而,将 NLP 模型应用于客户结果预测的研究还很有限,这些研究(a)使用治疗师与客户互动的记录作为客户症状改善的直接预测指标,(b)考虑了上下文语言的复杂性,以及(c)在模型开发中使用了经典训练和测试分割的最佳实践。我们使用了来自 795 位客户和 56 位治疗师的 2,630 个疗程记录,开发出了 NLP 模型,该模型可根据前一个疗程的记录直接预测特定疗程的客户症状(Spearman's rho =0.32,p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信