HiWaRPP ― Hierarchical Wavelet-based Retrieval on Peer-to-Peer Network

M. Lupu, Bei Yu
{"title":"HiWaRPP ― Hierarchical Wavelet-based Retrieval on Peer-to-Peer Network","authors":"M. Lupu, Bei Yu","doi":"10.1109/ICDE.2006.76","DOIUrl":null,"url":null,"abstract":"This paper introduces the use of wavelets for information retrieval in a peer-to-peer environment. In order to achieve our purposes, we use a new combination between broadcasting and a hierarchical overlay. Compared to previous approaches, we do not store complete information about the children of a super-peer, nor do we broadcast the queries blindly. We approximate the feature vectors using the multiresolution analysis and the discrete wavelet transform. Each peer is represented by a high-dimensional feature vector and the height of the hierarchy is logarithmic in the dimensionality of this feature vector. Leaf nodes represent real peers, while internal nodes are virtual peers used for routing. Our retrieval method has been tested with both real and synthetic data and shown to be efficient in retrieving relevant information, resulting in good precision and recall on four standard test collections.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"31 1","pages":"133-133"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces the use of wavelets for information retrieval in a peer-to-peer environment. In order to achieve our purposes, we use a new combination between broadcasting and a hierarchical overlay. Compared to previous approaches, we do not store complete information about the children of a super-peer, nor do we broadcast the queries blindly. We approximate the feature vectors using the multiresolution analysis and the discrete wavelet transform. Each peer is represented by a high-dimensional feature vector and the height of the hierarchy is logarithmic in the dimensionality of this feature vector. Leaf nodes represent real peers, while internal nodes are virtual peers used for routing. Our retrieval method has been tested with both real and synthetic data and shown to be efficient in retrieving relevant information, resulting in good precision and recall on four standard test collections.
HiWaRPP & # 8213;基于层次小波的点对点网络检索
本文介绍了小波在点对点环境下信息检索中的应用。为了达到我们的目的,我们在广播和分层覆盖之间使用了一种新的组合。与以前的方法相比,我们不存储关于超级对等体的子节点的完整信息,也不盲目地广播查询。我们使用多分辨率分析和离散小波变换来近似特征向量。每个节点由一个高维特征向量表示,层次结构的高度在该特征向量的维度上是对数的。叶子节点代表真实的对等点,而内部节点是用于路由的虚拟对等点。我们的检索方法已经用真实数据和合成数据进行了测试,在检索相关信息方面显示出效率,在四个标准测试集合上获得了良好的精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信