Hecke operators in Bredon (co)homology, K-(co)homology and Bianchi groups

IF 0.5 3区 数学 Q3 MATHEMATICS
David Munoz, Jorge Plazas, Mario Vel'asquez
{"title":"Hecke operators in Bredon (co)homology, K-(co)homology and Bianchi groups","authors":"David Munoz, Jorge Plazas, Mario Vel'asquez","doi":"10.1142/s1793525321500606","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a framework for the study of Hecke operators acting on the Bredon (co)homology of an arithmetic discrete group. Our main interest lies in the study of Hecke operators for Bianchi groups. Using the Baum–Connes conjecture, we can transfer computations in Bredon homology to obtain a Hecke action on the [Formula: see text]-theory of the reduced [Formula: see text]-algebra of the group. We show the power of this method giving explicit computations for the group [Formula: see text]. In order to carry out these computations we use an Atiyah–Segal type spectral sequence together with the Bredon homology of the classifying space for proper actions.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500606","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we provide a framework for the study of Hecke operators acting on the Bredon (co)homology of an arithmetic discrete group. Our main interest lies in the study of Hecke operators for Bianchi groups. Using the Baum–Connes conjecture, we can transfer computations in Bredon homology to obtain a Hecke action on the [Formula: see text]-theory of the reduced [Formula: see text]-algebra of the group. We show the power of this method giving explicit computations for the group [Formula: see text]. In order to carry out these computations we use an Atiyah–Segal type spectral sequence together with the Bredon homology of the classifying space for proper actions.
Bredon (co)同调、K-(co)同调和Bianchi群中的Hecke算子
本文给出了一个框架,用于研究作用于算术离散群的Bredon (co)同调上的Hecke算子。我们的主要兴趣在于研究Bianchi群的Hecke算子。利用Baum-Connes猜想,我们可以将Bredon同调中的计算转移到群的[公式:见文]-约化[公式:见文]-代数的[理论]- Hecke作用上。我们展示了这种方法的力量,给出了组的显式计算[公式:见文本]。为了进行这些计算,我们使用了一个Atiyah-Segal型谱序列以及固有动作分类空间的Bredon同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信