Comparing Physiological Feature Selection Methods for Emotion Recognition

K. Kaushal, Mahesh Pawar, Sachin Goyal, Ratish Agrawal
{"title":"Comparing Physiological Feature Selection Methods for Emotion Recognition","authors":"K. Kaushal, Mahesh Pawar, Sachin Goyal, Ratish Agrawal","doi":"10.1109/ICACAT.2018.8933599","DOIUrl":null,"url":null,"abstract":"Human-computer interactions result in psychological effects on human behavior. The analysis of the human behavior can be done using physiological data of a user in intense emotional states. A user may have intense emotions, which could make the user more nervous, sad or aggressive. This paper shows how physiological data can be used to analyze a user’s emotional state and summarizes the findings of using different feature selection and classification techniques to learn the user’s emotional states. The general flow of this approach is to record physiological signals from a person, extract features and feed them to a machine learning algorithm. This algorithm will then predict the user’s emotional state. The outcome will be helpful to analyze and understand how to train the models with the given dataset. Results of this study can be utilized for future research and applications for mitigating the effects of the content on user’s emotions.","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human-computer interactions result in psychological effects on human behavior. The analysis of the human behavior can be done using physiological data of a user in intense emotional states. A user may have intense emotions, which could make the user more nervous, sad or aggressive. This paper shows how physiological data can be used to analyze a user’s emotional state and summarizes the findings of using different feature selection and classification techniques to learn the user’s emotional states. The general flow of this approach is to record physiological signals from a person, extract features and feed them to a machine learning algorithm. This algorithm will then predict the user’s emotional state. The outcome will be helpful to analyze and understand how to train the models with the given dataset. Results of this study can be utilized for future research and applications for mitigating the effects of the content on user’s emotions.
情绪识别的生理特征选择方法比较
人机交互会对人的行为产生心理影响。人类行为的分析可以通过使用用户在强烈情绪状态下的生理数据来完成。用户可能会有强烈的情绪,这可能会使用户更加紧张、悲伤或好斗。本文展示了如何使用生理数据来分析用户的情绪状态,并总结了使用不同的特征选择和分类技术来学习用户情绪状态的结果。这种方法的一般流程是记录一个人的生理信号,提取特征并将其输入机器学习算法。该算法将预测用户的情绪状态。结果将有助于分析和理解如何使用给定的数据集训练模型。本研究的结果可用于未来的研究和应用,以减轻内容对用户情绪的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信