{"title":"Towards optimised decisions for resource and carbon-efficient structural design","authors":"R. Hingorani, J. Köhler","doi":"10.1080/10286608.2023.2198767","DOIUrl":null,"url":null,"abstract":"ABSTRACT Engineering structures consume a significant fraction of resources and contribute to greenhouse gas emissions worldwide. A conducted literature review shows that most existing approaches to improve the environmental performance of structures concern the adoption of decisions during the conceptual design stage (e.g. on the choice of material), often in connection with life cycle assessment. However, approaches for addressing environmental objectives in practice are often hampered by economic interests pursuing short-term profit. Moreover, such approaches are rather descriptive and lack criteria for assessing the acceptability of specific solutions. Sustainable development of our built environment requires hence a shift of paradigm on how engineering structures are designed. In this paper it is claimed that this should be approached at the strategical level of structural design codes, which contain the rules that support everyday engineering decisions in regard to structural safety and functionality. The paper discusses the reasons why these rules as conceived do not foster an optimal use of materials and explores possibilities for savings of resources and greenhouse gas emissions through modifications of these rules. The potential of risk-informed decision approaches in this context is highlighted and illustrated by a case study – the design of steel beams in building structures.","PeriodicalId":50689,"journal":{"name":"Civil Engineering and Environmental Systems","volume":"73 1","pages":"1 - 31"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering and Environmental Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10286608.2023.2198767","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Engineering structures consume a significant fraction of resources and contribute to greenhouse gas emissions worldwide. A conducted literature review shows that most existing approaches to improve the environmental performance of structures concern the adoption of decisions during the conceptual design stage (e.g. on the choice of material), often in connection with life cycle assessment. However, approaches for addressing environmental objectives in practice are often hampered by economic interests pursuing short-term profit. Moreover, such approaches are rather descriptive and lack criteria for assessing the acceptability of specific solutions. Sustainable development of our built environment requires hence a shift of paradigm on how engineering structures are designed. In this paper it is claimed that this should be approached at the strategical level of structural design codes, which contain the rules that support everyday engineering decisions in regard to structural safety and functionality. The paper discusses the reasons why these rules as conceived do not foster an optimal use of materials and explores possibilities for savings of resources and greenhouse gas emissions through modifications of these rules. The potential of risk-informed decision approaches in this context is highlighted and illustrated by a case study – the design of steel beams in building structures.
期刊介绍:
Civil Engineering and Environmental Systems is devoted to the advancement of systems thinking and systems techniques throughout systems engineering, environmental engineering decision-making, and engineering management. We do this by publishing the practical applications and developments of "hard" and "soft" systems techniques and thinking.
Submissions that allow for better analysis of civil engineering and environmental systems might look at:
-Civil Engineering optimization
-Risk assessment in engineering
-Civil engineering decision analysis
-System identification in engineering
-Civil engineering numerical simulation
-Uncertainty modelling in engineering
-Qualitative modelling of complex engineering systems