Cow Milk Quality Grading using Machine Learning Methods

IF 0.3
Shubhangi Neware
{"title":"Cow Milk Quality Grading using Machine Learning Methods","authors":"Shubhangi Neware","doi":"10.47164/ijngc.v14i1.1005","DOIUrl":null,"url":null,"abstract":"Milk is considered as complete food as it contains rich set of proteins and vitamins. Therefore determining quality of cow milk plays an important role in today’s research. In this paper four methods are implemented to check quality of cow milk using dataset consists of 1059 milk samples taken from various cows. Three grades of milk grade A, B, C are considered based on different features of cow milk. Various machine learning methods K Nearest neighbors, Logistic regression, Support Vector machine and ANN are implemented. Accuracy of these methods is then compared. It has been observed that the results of KNN (n=3) is more accurate amongst all four methods implemented in the proposed research work.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Milk is considered as complete food as it contains rich set of proteins and vitamins. Therefore determining quality of cow milk plays an important role in today’s research. In this paper four methods are implemented to check quality of cow milk using dataset consists of 1059 milk samples taken from various cows. Three grades of milk grade A, B, C are considered based on different features of cow milk. Various machine learning methods K Nearest neighbors, Logistic regression, Support Vector machine and ANN are implemented. Accuracy of these methods is then compared. It has been observed that the results of KNN (n=3) is more accurate amongst all four methods implemented in the proposed research work.
使用机器学习方法的牛奶质量分级
牛奶含有丰富的蛋白质和维生素,被认为是完整的食物。因此,确定牛奶的质量在当今的研究中起着重要的作用。本文利用1059个不同奶牛的牛奶样本数据集,实现了四种方法对牛奶质量的检测。根据牛奶的不同特性,将牛奶分为A、B、C三个等级。实现了各种机器学习方法K近邻、逻辑回归、支持向量机和人工神经网络。然后比较了这些方法的准确性。已经观察到,在拟议的研究工作中实施的所有四种方法中,KNN (n=3)的结果更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信