Tatsuma Kawachi, Takuto Sasaki, A. Kaneko, Y. Nishio, T. Ogawa
{"title":"Numerical Study on a Flow Field in the Rinsing Process of a Beverage Can Transported With a Constant Velocity","authors":"Tatsuma Kawachi, Takuto Sasaki, A. Kaneko, Y. Nishio, T. Ogawa","doi":"10.1115/fedsm2021-66025","DOIUrl":null,"url":null,"abstract":"\n The present study investigates the flow field in a rinsing process of a beverage can numerically and experimentally. The three-dimensional Navier-Stokes equations are solved with a finite volume method along with the volume of fluid (VOF) method for free surface. The beverage can set upside down is transported with a constant velocity and rinsed with a water jet ejected from a nozzle below the can. The case of a can at rest is also simulated. The result shows that the ejected water impinges on the can bottom and spreads along the side surface of the can. Then, as it flows down toward the can mouth, its front surface forms splashes. For the stationary can case, after the jet impinges on the can bottom, it almost evenly spreads over the side surface. The water flows downward and becomes branched flows by fingering. The time average of VOF is calculated to visualize the regions rinsed by water. For the case of a moving can, only the top region of the can is rinsed, and the ratio of the rinsed region drops to 29% from 69% for the stationary case. The computed water surfaces qualitatively agree with the experimental result, but the shape of the front surface, such as splashes and fingerings, cannot be resolved with the simulation.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-66025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the flow field in a rinsing process of a beverage can numerically and experimentally. The three-dimensional Navier-Stokes equations are solved with a finite volume method along with the volume of fluid (VOF) method for free surface. The beverage can set upside down is transported with a constant velocity and rinsed with a water jet ejected from a nozzle below the can. The case of a can at rest is also simulated. The result shows that the ejected water impinges on the can bottom and spreads along the side surface of the can. Then, as it flows down toward the can mouth, its front surface forms splashes. For the stationary can case, after the jet impinges on the can bottom, it almost evenly spreads over the side surface. The water flows downward and becomes branched flows by fingering. The time average of VOF is calculated to visualize the regions rinsed by water. For the case of a moving can, only the top region of the can is rinsed, and the ratio of the rinsed region drops to 29% from 69% for the stationary case. The computed water surfaces qualitatively agree with the experimental result, but the shape of the front surface, such as splashes and fingerings, cannot be resolved with the simulation.