A Benders Decomposition Approach to Correlation Clustering

IF 65.3 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jovita Lukasik, M. Keuper, M. Singh, Julian Yarkony
{"title":"A Benders Decomposition Approach to Correlation Clustering","authors":"Jovita Lukasik, M. Keuper, M. Singh, Julian Yarkony","doi":"10.1109/MLHPCAI4S51975.2020.00009","DOIUrl":null,"url":null,"abstract":"We tackle the problem of graph partitioning for image segmentation using correlation clustering (CC), which we treat as an integer linear program (ILP). We reformulate optimization in the ILP so as to admit efficient optimization via Benders decomposition, a classic technique from operations research. Our Benders decomposition formulation has many subproblems, each associated with a node in the CC instance’s graph, which can be solved in parallel. Each Benders subproblem enforces the cycle inequalities corresponding to edges with negative (repulsive) weights attached to its corresponding node in the CC instance. We generate Magnanti-Wong Benders rows in addition to standard Benders rows to accelerate optimization. Our Benders decomposition approach provides a promising new avenue to accelerate optimization for CC, and, in contrast to previous cutting plane approaches, theoretically allows for massive parallelization.","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"16 1","pages":"9-16"},"PeriodicalIF":65.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLHPCAI4S51975.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

We tackle the problem of graph partitioning for image segmentation using correlation clustering (CC), which we treat as an integer linear program (ILP). We reformulate optimization in the ILP so as to admit efficient optimization via Benders decomposition, a classic technique from operations research. Our Benders decomposition formulation has many subproblems, each associated with a node in the CC instance’s graph, which can be solved in parallel. Each Benders subproblem enforces the cycle inequalities corresponding to edges with negative (repulsive) weights attached to its corresponding node in the CC instance. We generate Magnanti-Wong Benders rows in addition to standard Benders rows to accelerate optimization. Our Benders decomposition approach provides a promising new avenue to accelerate optimization for CC, and, in contrast to previous cutting plane approaches, theoretically allows for massive parallelization.
相关聚类的Benders分解方法
我们使用相关聚类(CC)来解决图像分割的图划分问题,我们将其视为整数线性规划(ILP)。我们重新定义了ILP中的优化,以便通过运筹学中的经典技术Benders分解进行有效的优化。我们的bender分解公式有许多子问题,每个子问题都与CC实例图中的一个节点相关联,这些子问题可以并行解决。每个Benders子问题都强制执行与CC实例中相应节点具有负(排斥)权值的边对应的循环不等式。除了标准Benders行之外,我们还生成Magnanti-Wong Benders行来加速优化。我们的Benders分解方法为加速CC的优化提供了一个有前途的新途径,并且与以前的切割平面方法相比,理论上允许大规模并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
108.50
自引率
0.00%
发文量
5
期刊介绍: Each issue of Foundations and Trends® in Machine Learning comprises a monograph of at least 50 pages written by research leaders in the field. We aim to publish monographs that provide an in-depth, self-contained treatment of topics where there have been significant new developments. Typically, this means that the monographs we publish will contain a significant level of mathematical detail (to describe the central methods and/or theory for the topic at hand), and will not eschew these details by simply pointing to existing references. Literature surveys and original research papers do not fall within these aims.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信