On the basins of convergence in the magnetic-binary problem with angular velocity

IF 0.9 Q3 MATHEMATICS, APPLIED
Md Sanam Suraj, Rajiv Aggarwal, Md Chand Asique, Amit Mittal
{"title":"On the basins of convergence in the magnetic-binary problem with angular velocity","authors":"Md Sanam Suraj,&nbsp;Rajiv Aggarwal,&nbsp;Md Chand Asique,&nbsp;Amit Mittal","doi":"10.1002/cmm4.1161","DOIUrl":null,"url":null,"abstract":"<p>The restricted three-body problem, where the primaries are magnetic dipoles, is discussed. In the predefined interval, the effect of the varying values of mass parameter <math>\n <mrow>\n <mi>μ</mi>\n </mrow></math> and the angular velocity <math>\n <mrow>\n <mi>ω</mi>\n </mrow></math> on the parametric variation of locations of the equilibrium points are illustrated. Indeed, the influence of the values of the ratio <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math> of the magnetic moments in the presence of angular velocity <math>\n <mrow>\n <mi>ω</mi>\n </mrow></math> on the topology of the basins of convergence is discussed. The bivariate version of the well-known Newton–Raphson scheme is used to illustrate the basins of convergence on the configuration (<i>x</i>, <i>y</i>) plane. In addition, the correlations betwixt the basins of convergence associated to the equilibrium points and the linked number of iterations required to assure the preassumed precision are discussed. In this study, a rigorous and structured numerical investigation are illustrated by exhibiting how the values of <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math> and <math>\n <mrow>\n <mi>ω</mi>\n </mrow></math> have significant influence on the shape, the topology and also the degree of fractality of the domain of basins of convergence. The results and outcomes of present study strongly indicate that the parameters <math>\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>μ</mi>\n </mrow></math>, and <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math> have significant influence in the electromagnetic binary system.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1161","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

The restricted three-body problem, where the primaries are magnetic dipoles, is discussed. In the predefined interval, the effect of the varying values of mass parameter μ and the angular velocity ω on the parametric variation of locations of the equilibrium points are illustrated. Indeed, the influence of the values of the ratio λ of the magnetic moments in the presence of angular velocity ω on the topology of the basins of convergence is discussed. The bivariate version of the well-known Newton–Raphson scheme is used to illustrate the basins of convergence on the configuration (x, y) plane. In addition, the correlations betwixt the basins of convergence associated to the equilibrium points and the linked number of iterations required to assure the preassumed precision are discussed. In this study, a rigorous and structured numerical investigation are illustrated by exhibiting how the values of λ and ω have significant influence on the shape, the topology and also the degree of fractality of the domain of basins of convergence. The results and outcomes of present study strongly indicate that the parameters ω , μ , and λ have significant influence in the electromagnetic binary system.

带角速度的磁二元问题的收敛盆地
讨论了原色为磁偶极子的受限三体问题。在给定的区间内,讨论了质量参数μ和角速度ω的变化对平衡点位置参数变化的影响。实际上,讨论了角速度ω存在时磁矩之比λ值对收敛盆地拓扑结构的影响。众所周知的牛顿-拉夫森格式的二元版本被用来说明构型(x, y)平面上的收敛盆地。此外,还讨论了与平衡点相关的收敛盆地与保证预定精度所需的相关迭代次数之间的关系。在这项研究中,通过展示λ和ω的值如何对收敛盆地域的形状、拓扑结构和分形程度产生重大影响,说明了严格和结构化的数值研究。本研究的结果和结果有力地表明,参数ω、μ和λ在电磁双星系统中有显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信