On the existence and multiplicity of topologically twisting incompressible $H$-harmonic maps and a structural H-condition

George Morrison, A. Taheri
{"title":"On the existence and multiplicity of topologically twisting incompressible $H$-harmonic maps and a structural H-condition","authors":"George Morrison, A. Taheri","doi":"10.7153/dea-2020-12-04","DOIUrl":null,"url":null,"abstract":"In this paper we address questions on the existence and multiplicity of solutions to the nonlinear elliptic system in divergence form ⎧⎨ ⎩ div (H∇u) = Hs|∇u|u+[cof∇u]∇P in Ω, det∇u = 1 in Ω, u = φ on ∂Ω. Here H = H(r,s) > 0 is a weight function of class C 2 with Hs = ∂H/∂ s and (r,s) = (|x|, |u|2) , Ω ⊂ Rn is a bounded domain, P = P(x) is an unknown hydrostatic pressure field and φ is a prescribed boundary map. The system is the Euler-Lagrange equation for a weighted Dirichlet energy subject to a pointwise incompressibility constraint on the admissible maps and arises in diverse fields such as geometric function theory and nonlinear elasticity. Whilst the usual methods of critical point theory drastically fail in this vectorial gradient constrained setting we establish the existence of multiple solutions in certain geometries by way of analysing an associated reduced energy for SO(n) -valued fields, a resulting decoupled PDE system and a structure theorem for irrotational vector fields generated by skew-symmetric matrices. Most notably a crucial ”H -condition” linking to the system and precisely capturing an extreme dimensional dichotomy in the structure of the solution set is discovered and analysed. Mathematics subject classification (2010): 35J57, 35J50, 35J62, 49J10, 35A15, 58D19, 22E30.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"6 1","pages":"47-67"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2020-12-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we address questions on the existence and multiplicity of solutions to the nonlinear elliptic system in divergence form ⎧⎨ ⎩ div (H∇u) = Hs|∇u|u+[cof∇u]∇P in Ω, det∇u = 1 in Ω, u = φ on ∂Ω. Here H = H(r,s) > 0 is a weight function of class C 2 with Hs = ∂H/∂ s and (r,s) = (|x|, |u|2) , Ω ⊂ Rn is a bounded domain, P = P(x) is an unknown hydrostatic pressure field and φ is a prescribed boundary map. The system is the Euler-Lagrange equation for a weighted Dirichlet energy subject to a pointwise incompressibility constraint on the admissible maps and arises in diverse fields such as geometric function theory and nonlinear elasticity. Whilst the usual methods of critical point theory drastically fail in this vectorial gradient constrained setting we establish the existence of multiple solutions in certain geometries by way of analysing an associated reduced energy for SO(n) -valued fields, a resulting decoupled PDE system and a structure theorem for irrotational vector fields generated by skew-symmetric matrices. Most notably a crucial ”H -condition” linking to the system and precisely capturing an extreme dimensional dichotomy in the structure of the solution set is discovered and analysed. Mathematics subject classification (2010): 35J57, 35J50, 35J62, 49J10, 35A15, 58D19, 22E30.
拓扑扭曲不可压缩H调和映射的存在性和多重性及结构H条件
在本文中,我们讨论了散度形式的非线性椭圆系统的解的存在性和多重性问题: div (H∇u) = Hs|∇u|u+[cof∇u]∇P在Ω中,det∇u = 1在Ω中,u = φ在∂Ω中。这里H = H(r,s) > 0是c2类的权函数,H =∂H/∂s, (r,s) = (|x|, |u|2), Ω∧Rn是有界域,P = P(x)是未知的静水压力场,φ是规定的边界图。该系统是在可容许映射上受点不可压缩约束的加权狄利克雷能量的欧拉-拉格朗日方程,在几何函数理论和非线性弹性等多个领域都有应用。当临界点理论的常规方法在这种矢量梯度约束设置中彻底失败时,我们通过分析SO(n)值场的相关约简能量,由此产生的解耦PDE系统以及由斜对称矩阵生成的无旋转矢量场的结构定理,建立了某些几何中多个解的存在性。最值得注意的是,一个关键的“H条件”连接到系统,并精确地捕获了解集结构中的极端维度二分法。数学学科分类(2010):35J57、35J50、35J62、49J10、35A15、58D19、22E30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信