Selection Bias in Voluntary Random Testing: Evidence from a COVID-19 Antibody Study

D. Dutz, M. Greenstone, Ali Hortaçsu, Santiago E. Lacouture, M. Mogstad, Danae Roumis, A. Shaikh, Alexander Torgovitsky, Winnie van Dijk
{"title":"Selection Bias in Voluntary Random Testing: Evidence from a COVID-19 Antibody Study","authors":"D. Dutz, M. Greenstone, Ali Hortaçsu, Santiago E. Lacouture, M. Mogstad, Danae Roumis, A. Shaikh, Alexander Torgovitsky, Winnie van Dijk","doi":"10.1257/pandp.20231091","DOIUrl":null,"url":null,"abstract":"We use data from a serological study that experimentally varied financial incentives for participation to detect and characterize selection bias. Participants are from neighborhoods with substantially lower COVID-19 risks. Existing methods to account for the resulting selection bias produce wide bounds or estimates that are inconsistent with the population. One explanation for these inconsistent estimates is that the underlying methods presume a single dimension of unobserved heterogeneity. The data suggest that there are two types of nonparticipants with opposing selection patterns. Allowing for these different types may lead to better accounting for selection bias.","PeriodicalId":72114,"journal":{"name":"AEA papers and proceedings. American Economic Association","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AEA papers and proceedings. American Economic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/pandp.20231091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use data from a serological study that experimentally varied financial incentives for participation to detect and characterize selection bias. Participants are from neighborhoods with substantially lower COVID-19 risks. Existing methods to account for the resulting selection bias produce wide bounds or estimates that are inconsistent with the population. One explanation for these inconsistent estimates is that the underlying methods presume a single dimension of unobserved heterogeneity. The data suggest that there are two types of nonparticipants with opposing selection patterns. Allowing for these different types may lead to better accounting for selection bias.
自愿随机检测中的选择偏倚:来自COVID-19抗体研究的证据
我们使用来自一项血清学研究的数据,通过实验改变参与的财务激励来检测和表征选择偏差。参与者来自COVID-19风险低得多的社区。现有的解释选择偏差的方法产生了与总体不一致的宽界限或估计值。对这些不一致的估计的一种解释是,基本方法假设了未观察到的异质性的单一维度。数据表明,有两种选择模式相反的非参与者。考虑到这些不同的类型可能会更好地解释选择偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信