{"title":"Optimal Strategy for Multiple Evaders Against an Agile Pursuer","authors":"Chunsheng Liu, M. Trevorrow","doi":"10.1115/dscc2019-8924","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on the problem of multiple slow moving and less maneuverable evaders against an agile pursuer, addressing the optimal strategy for multiple evaders. This is the so-called wolf-sheep game. Two scenarios are examined: 1) both pursuer and evaders have perfect knowledge about opponents, and 2) the pursuer has limited detection capability. Since the wolf-sheep game involves the Boolean value state, the game is hard to solve using traditional methods. This paper adopts a hierarchical approach. The two player game is solved first. Then the solution of the multiplayer game is based on the two-player game and the pursuer chasing order. The optimal strategy is calculated based on Nash equilibrium. The game with limited detection capability is solved by maximizing the Close Point of Approach (CPA). The optimal solution will be found theoretically and numerically.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the problem of multiple slow moving and less maneuverable evaders against an agile pursuer, addressing the optimal strategy for multiple evaders. This is the so-called wolf-sheep game. Two scenarios are examined: 1) both pursuer and evaders have perfect knowledge about opponents, and 2) the pursuer has limited detection capability. Since the wolf-sheep game involves the Boolean value state, the game is hard to solve using traditional methods. This paper adopts a hierarchical approach. The two player game is solved first. Then the solution of the multiplayer game is based on the two-player game and the pursuer chasing order. The optimal strategy is calculated based on Nash equilibrium. The game with limited detection capability is solved by maximizing the Close Point of Approach (CPA). The optimal solution will be found theoretically and numerically.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.