Information-Driven Direct RGB-D Odometry

Alejandro Fontan, Javier Civera, Rudolph Triebel
{"title":"Information-Driven Direct RGB-D Odometry","authors":"Alejandro Fontan, Javier Civera, Rudolph Triebel","doi":"10.1109/cvpr42600.2020.00498","DOIUrl":null,"url":null,"abstract":"This paper presents an information-theoretic approach to point selection in direct RGB-D odometry. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. It is usual practice in visual odometry/SLAM to track several hundreds of points, achieving real-time performance in high-end desktop PCs. Reducing their computational footprint will facilitate the implementation of odometry and SLAM in low-end platforms such as small robots and AR/VR glasses. Our experimental results show that our novel information-based selection criterion allows us to reduce the number of tracked points an order of magnitude (down to only 24 of them), achieving an accuracy similar to the state of the art (sometimes outperforming it) while reducing 10 times the computational demand.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"34 1","pages":"4928-4936"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents an information-theoretic approach to point selection in direct RGB-D odometry. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. It is usual practice in visual odometry/SLAM to track several hundreds of points, achieving real-time performance in high-end desktop PCs. Reducing their computational footprint will facilitate the implementation of odometry and SLAM in low-end platforms such as small robots and AR/VR glasses. Our experimental results show that our novel information-based selection criterion allows us to reduce the number of tracked points an order of magnitude (down to only 24 of them), achieving an accuracy similar to the state of the art (sometimes outperforming it) while reducing 10 times the computational demand.
信息驱动的直接RGB-D里程计
本文提出了一种直接RGB-D测程中点选择的信息论方法。其目的是只选择信息量最大的测量值,以便在对精度影响最小的情况下减少优化问题。在视觉里程计/SLAM中,通常的做法是跟踪数百个点,在高端桌面pc中实现实时性能。减少它们的计算足迹将有助于在小型机器人和AR/VR眼镜等低端平台上实施里程计和SLAM。我们的实验结果表明,我们新颖的基于信息的选择标准使我们能够将跟踪点的数量减少一个数量级(减少到只有24个),在减少10倍的计算需求的同时,实现与当前技术水平相似的精度(有时甚至超过它)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信