{"title":"From spectral analysis to hysteresis loops: a breakthrough in the optimization of magnetic nanomaterials for bioapplications","authors":"G. Barrera, P. Allia, P. Tiberto","doi":"10.1088/2515-7639/acdaf8","DOIUrl":null,"url":null,"abstract":"An innovative method is proposed to determine the most important magnetic properties of bioapplication-oriented magnetic nanomaterials exploiting the connection between hysteresis loop and frequency spectrum of magnetization. Owing to conceptual and practical simplicity, the method may result in a substantial advance in the optimization of magnetic nanomaterials for use in precision medicine. The techniques of frequency analysis of the magnetization currently applied to nanomaterials both in vitro and in vivo usually give a limited, qualitative picture of the effects of the active biological environment, and have to be complemented by direct measurement of the hysteresis loop. We show that the very same techniques can be used to convey all the information needed by present-day biomedical applications without the necessity of doing conventional magnetic measurements in the same experimental conditions. The spectral harmonics obtained analysing the response of a magnetic tracer in frequency, as in magnetic particle spectroscopy/imaging, are demonstrated to lead to a precise reconstruction of the hysteresis loop, whose most important parameters (loop’s area, magnetic remanence and coercive field) are directly obtained through transformation formulas based on simple manipulation of the harmonics amplitudes and phases. The validity of the method is experimentally verified on various magnetic nanomaterials for bioapplications submitted to ac magnetic fields of different amplitude, frequency and waveform. In all cases, the experimental data taken in the frequency domain exactly reproduce the magnetic properties obtained from conventional magnetic measurements.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acdaf8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative method is proposed to determine the most important magnetic properties of bioapplication-oriented magnetic nanomaterials exploiting the connection between hysteresis loop and frequency spectrum of magnetization. Owing to conceptual and practical simplicity, the method may result in a substantial advance in the optimization of magnetic nanomaterials for use in precision medicine. The techniques of frequency analysis of the magnetization currently applied to nanomaterials both in vitro and in vivo usually give a limited, qualitative picture of the effects of the active biological environment, and have to be complemented by direct measurement of the hysteresis loop. We show that the very same techniques can be used to convey all the information needed by present-day biomedical applications without the necessity of doing conventional magnetic measurements in the same experimental conditions. The spectral harmonics obtained analysing the response of a magnetic tracer in frequency, as in magnetic particle spectroscopy/imaging, are demonstrated to lead to a precise reconstruction of the hysteresis loop, whose most important parameters (loop’s area, magnetic remanence and coercive field) are directly obtained through transformation formulas based on simple manipulation of the harmonics amplitudes and phases. The validity of the method is experimentally verified on various magnetic nanomaterials for bioapplications submitted to ac magnetic fields of different amplitude, frequency and waveform. In all cases, the experimental data taken in the frequency domain exactly reproduce the magnetic properties obtained from conventional magnetic measurements.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.