{"title":"Convergence of nonlinear numerical approximations for\n\nan elliptic linear problem with irregular data","authors":"R. Eymard, David Maltese","doi":"10.1051/m2an/2021079","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of the approximation, using two nonlinear numerical methods, of a linear elliptic problem with measure data and heterogeneous anisotropic diffusion matrix. Both methods show convergence properties to a continuous solution of the problem in a weak sense, through the change of variable u = ψ(v), where ψ is a well chosen diffeomorphism between (−1, 1) and R, and v is valued in (−1, 1). We first study a nonlinear finite element approximation on any simplicial grid. We prove the\n\nexistence of a discrete solution, and, under standard regularity conditions, we prove its convergence to a weak solution of the problem by applying Hölder and Sobolev inequalities. Some numerical results, in 2D and 3D cases where the solution does not belong to H 1(Ω), show that this method can provide accurate results. We then construct a numerical scheme which presents a convergence property to the entropy weak solution of the problem in the case where the right-hand side belongs to L1 . This is achieved owing to a nonlinear control volume finite element (CVFE) method, keeping the same nonlinear reformulation, and adding an upstream weighting evaluation and a nonlinear p−Laplace vanishing stabilisation term.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2021079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
This work is devoted to the study of the approximation, using two nonlinear numerical methods, of a linear elliptic problem with measure data and heterogeneous anisotropic diffusion matrix. Both methods show convergence properties to a continuous solution of the problem in a weak sense, through the change of variable u = ψ(v), where ψ is a well chosen diffeomorphism between (−1, 1) and R, and v is valued in (−1, 1). We first study a nonlinear finite element approximation on any simplicial grid. We prove the
existence of a discrete solution, and, under standard regularity conditions, we prove its convergence to a weak solution of the problem by applying Hölder and Sobolev inequalities. Some numerical results, in 2D and 3D cases where the solution does not belong to H 1(Ω), show that this method can provide accurate results. We then construct a numerical scheme which presents a convergence property to the entropy weak solution of the problem in the case where the right-hand side belongs to L1 . This is achieved owing to a nonlinear control volume finite element (CVFE) method, keeping the same nonlinear reformulation, and adding an upstream weighting evaluation and a nonlinear p−Laplace vanishing stabilisation term.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.