License plate localization based on Kapur optimal multilevel threshold

Nur Aliyatul Husna Bt Yahya, S. Abdullah, Abbas Salimi Zaini, Mohd Zamri Murah, A. Abdullah, Shariffpudin Basiron
{"title":"License plate localization based on Kapur optimal multilevel threshold","authors":"Nur Aliyatul Husna Bt Yahya, S. Abdullah, Abbas Salimi Zaini, Mohd Zamri Murah, A. Abdullah, Shariffpudin Basiron","doi":"10.1109/CONFLUENCE.2017.7943127","DOIUrl":null,"url":null,"abstract":"A license plate localization system is useful for many applications. Due to ambient of lighting in three distinct situation which are morning, afternoon and night causing difficulty to search optimum threshold value in each situation. This research uses global thresholding approach by using Kapur entropy multilevel threshold based on Patch-Levy Bees Algorithm (PLBA). As a result, the system properly localize and identify number plate in the image by using proposed segmentation image. From the experiment, proposed method are achieve accuracy rates to 67.68%, 90.71%, 24.34% respectively for morning, afternoon and night dataset.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"10 9 1","pages":"77-81"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A license plate localization system is useful for many applications. Due to ambient of lighting in three distinct situation which are morning, afternoon and night causing difficulty to search optimum threshold value in each situation. This research uses global thresholding approach by using Kapur entropy multilevel threshold based on Patch-Levy Bees Algorithm (PLBA). As a result, the system properly localize and identify number plate in the image by using proposed segmentation image. From the experiment, proposed method are achieve accuracy rates to 67.68%, 90.71%, 24.34% respectively for morning, afternoon and night dataset.
基于Kapur最优多级阈值的车牌定位
车牌定位系统在许多应用中都很有用。由于在三种不同情况下的照明环境,即早上,下午和晚上,导致难以在每种情况下搜索最佳阈值。本研究采用基于Patch-Levy Bees算法(PLBA)的Kapur熵多层阈值的全局阈值方法。结果表明,该系统利用所提出的分割图像对图像中的车牌进行了正确的定位和识别。实验结果表明,该方法在早晨、下午和夜间数据集上的准确率分别达到67.68%、90.71%和24.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信