Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices

H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. Shelby, K. Rocki, A. Chen, G. Burr
{"title":"Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices","authors":"H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. Shelby, K. Rocki, A. Chen, G. Burr","doi":"10.23919/VLSIT.2019.8776519","DOIUrl":null,"url":null,"abstract":"We report accuracy for forward inference of long-short-term-memory (LSTM) networks using weights programmed into the conductances of $> 2.5\\text{M}$ phase-change memory (PCM) devices. We demonstrate strategies for software weight-mapping and programming of hardware analog conductances that provide accurate weight programming despite significant device variability. Inference accuracy very close to software-model baselines is achieved on several language modeling tasks.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"47 31 1","pages":"T82-T83"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We report accuracy for forward inference of long-short-term-memory (LSTM) networks using weights programmed into the conductances of $> 2.5\text{M}$ phase-change memory (PCM) devices. We demonstrate strategies for software weight-mapping and programming of hardware analog conductances that provide accurate weight programming despite significant device variability. Inference accuracy very close to software-model baselines is achieved on several language modeling tasks.
使用2.5M模拟相变存储器器件在软件等效精度下推断长短期记忆网络
我们报告了长短期记忆(LSTM)网络前向推理的准确性,使用将权重编程到$> 2.5\text{M}$相变记忆(PCM)器件的电导中。我们演示了硬件模拟电导的软件权重映射和编程策略,这些策略可以在显著的器件可变性下提供准确的权重编程。在几个语言建模任务上,实现了非常接近软件模型基线的推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信