{"title":"NFV/SDN as an Enabler for Dynamic Placement Method of mmWave Embedded UAV Access Base Stations","authors":"G. Tran, Masanori Ozasa, Jin Nakazato","doi":"10.3390/network2040029","DOIUrl":null,"url":null,"abstract":"In the event of a major disaster, base stations in the disaster area will cease to function, making it impossible to obtain life-saving information. Therefore, it is necessary to provide a wireless communication infrastructure as soon as possible. To cope with this situation, we focus on NFV/SDN (Network Function Virtualization/Software-Defined Networking)-enabled UAVs equipped with a wireless communication infrastructure to provide services. The access link between the UAV and the user is assumed to be equipped with a millimeter-wave interface to achieve high throughput. However, the use of millimeter-waves increases the effect of attenuation, making the deployment of UAVs problematic. In addition, if multiple UAVs are deployed in a limited frequency band, co-channel interference will occur between the UAVs, resulting in a decrease in the data rate. Therefore, in this paper, we propose a method that combines UAV placement and frequency division for a non-uniform user distribution in an environment with multiple UAVs. As a result, it is found that the offered data rate is improved by using our specific placement method, in terms of not only the average but also the outage user rate.","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"105 1","pages":"479-499"},"PeriodicalIF":3.6000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/network2040029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
In the event of a major disaster, base stations in the disaster area will cease to function, making it impossible to obtain life-saving information. Therefore, it is necessary to provide a wireless communication infrastructure as soon as possible. To cope with this situation, we focus on NFV/SDN (Network Function Virtualization/Software-Defined Networking)-enabled UAVs equipped with a wireless communication infrastructure to provide services. The access link between the UAV and the user is assumed to be equipped with a millimeter-wave interface to achieve high throughput. However, the use of millimeter-waves increases the effect of attenuation, making the deployment of UAVs problematic. In addition, if multiple UAVs are deployed in a limited frequency band, co-channel interference will occur between the UAVs, resulting in a decrease in the data rate. Therefore, in this paper, we propose a method that combines UAV placement and frequency division for a non-uniform user distribution in an environment with multiple UAVs. As a result, it is found that the offered data rate is improved by using our specific placement method, in terms of not only the average but also the outage user rate.