The Trimmed Lasso: Sparse Recovery Guarantees and Practical Optimization by the Generalized Soft-Min Penalty

IF 1.9 Q1 MATHEMATICS, APPLIED
Tal Amir, R. Basri, B. Nadler
{"title":"The Trimmed Lasso: Sparse Recovery Guarantees and Practical Optimization by the Generalized Soft-Min Penalty","authors":"Tal Amir, R. Basri, B. Nadler","doi":"10.1137/20M1330634","DOIUrl":null,"url":null,"abstract":"We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${\\bf x}\\in\\mathbb{R}^d$ that minimizes the $\\ell_2$ residual $\\lVert A{\\bf x}-{\\bf y} \\rVert_2$. We consider a regularized approach, whereby this residual is penalized by the non-convex $\\textit{trimmed lasso}$, defined as the $\\ell_1$-norm of ${\\bf x}$ excluding its $k$ largest-magnitude entries. We prove that the trimmed lasso has several appealing theoretical properties, and in particular derive sparse recovery guarantees assuming successful optimization of the penalized objective. Next, we show empirically that directly optimizing this objective can be quite challenging. Instead, we propose a surrogate for the trimmed lasso, called the $\\textit{generalized soft-min}$. This penalty smoothly interpolates between the classical lasso and the trimmed lasso, while taking into account all possible $k$-sparse patterns. The generalized soft-min penalty involves summation over $\\binom{d}{k}$ terms, yet we derive a polynomial-time algorithm to compute it. This, in turn, yields a practical method for the original sparse approximation problem. Via simulations, we demonstrate its competitive performance compared to current state of the art.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"47 10 1","pages":"900-929"},"PeriodicalIF":1.9000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1330634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 11

Abstract

We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${\bf x}\in\mathbb{R}^d$ that minimizes the $\ell_2$ residual $\lVert A{\bf x}-{\bf y} \rVert_2$. We consider a regularized approach, whereby this residual is penalized by the non-convex $\textit{trimmed lasso}$, defined as the $\ell_1$-norm of ${\bf x}$ excluding its $k$ largest-magnitude entries. We prove that the trimmed lasso has several appealing theoretical properties, and in particular derive sparse recovery guarantees assuming successful optimization of the penalized objective. Next, we show empirically that directly optimizing this objective can be quite challenging. Instead, we propose a surrogate for the trimmed lasso, called the $\textit{generalized soft-min}$. This penalty smoothly interpolates between the classical lasso and the trimmed lasso, while taking into account all possible $k$-sparse patterns. The generalized soft-min penalty involves summation over $\binom{d}{k}$ terms, yet we derive a polynomial-time algorithm to compute it. This, in turn, yields a practical method for the original sparse approximation problem. Via simulations, we demonstrate its competitive performance compared to current state of the art.
修剪套索:稀疏恢复保证和广义软最小惩罚的实际优化
我们提出了一种新的方法来解决稀疏逼近或最佳子集选择问题,即找到一个最小化$\ell_2$残差$\lVert A{\bf x}-{\bf y} \rVert_2$的$k$ -稀疏向量${\bf x}\in\mathbb{R}^d$。我们考虑一种正则化的方法,其中这个残差被非凸$\textit{trimmed lasso}$惩罚,定义为${\bf x}$的$\ell_1$ -范数,不包括其$k$最大的项。我们证明了修剪套索具有几个吸引人的理论性质,特别是在惩罚目标成功优化的前提下,推导了稀疏恢复保证。接下来,我们将通过经验证明,直接优化这一目标非常具有挑战性。相反,我们建议为修剪过的套索提供一个代理,称为$\textit{generalized soft-min}$。这个惩罚平滑地在经典套索和裁剪套索之间插入,同时考虑到所有可能的$k$ -稀疏模式。广义软最小惩罚涉及$\binom{d}{k}$项的求和,但我们推导了一个多项式时间算法来计算它。这反过来又为原始稀疏逼近问题提供了一种实用的方法。通过模拟,我们展示了与当前最先进的技术相比,其具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信