{"title":"Neural Motion Compression with Frequency-adaptive Fourier Feature Network","authors":"Kenji Tojo, Yifei Chen, Nobuyuki Umetani","doi":"10.2312/egs.20221033","DOIUrl":null,"url":null,"abstract":"We present a neural-network-based compression method to alleviate the storage cost of motion capture data. Human mo-tions such as locomotion, often consist of periodic movements. We leverage this periodicity by applying Fourier features to a multilayered perceptron network. Our novel algorithm finds a set of Fourier feature frequencies based on the discrete cosine transformation (DCT) of motion. During training, we incrementally added a dominant frequency of the DCT to a current set of Fourier feature frequencies until a given quality threshold was satisfied. We conducted an experiment using CMU motion dataset, and the results suggest that our method achieves overall high compression ratio while maintaining its quality.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"61 1","pages":"61-64"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/egs.20221033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a neural-network-based compression method to alleviate the storage cost of motion capture data. Human mo-tions such as locomotion, often consist of periodic movements. We leverage this periodicity by applying Fourier features to a multilayered perceptron network. Our novel algorithm finds a set of Fourier feature frequencies based on the discrete cosine transformation (DCT) of motion. During training, we incrementally added a dominant frequency of the DCT to a current set of Fourier feature frequencies until a given quality threshold was satisfied. We conducted an experiment using CMU motion dataset, and the results suggest that our method achieves overall high compression ratio while maintaining its quality.