O(αsv2) corrections to the hadronic decay of vector quarkonia

Wen-Long Sang, F. Feng, Yu Jia
{"title":"O(αsv2)\n corrections to the hadronic decay of vector quarkonia","authors":"Wen-Long Sang, F. Feng, Yu Jia","doi":"10.1103/physrevd.102.094021","DOIUrl":null,"url":null,"abstract":"Within the nonrelativistic QCD (NRQCD) factorization framework, we compute the ${\\mathcal O}(\\alpha_s v^2)$ corrections to the hadronic decay rate of vector quarkonia, exemplified by $J/\\psi$ and $\\Upsilon$. Setting both the renormalization and NRQCD factorization scales to be $m_Q$, we obtain $\\Gamma(J/\\psi\\to {\\rm LH})= 0.0716\\frac{\\alpha_s^3}{m_c^2} \\langle \\mathcal{O}_1({}^3S_1)\\rangle_{J/\\psi} [1-1.19\\alpha_s+(-5.32+3.03\\alpha_s)\\langle v^2\\rangle_{J/\\psi}]$ and $\\Gamma(\\Upsilon\\to {\\rm LH})= 0.0716\\frac{\\alpha_s^3}{m_b^2}\\langle\\mathcal{O}_1({}^3S_1)\\rangle_{\\Upsilon}[1-1.56\\alpha_s+(-5.32+4.61\\alpha_s)\\langle v^2\\rangle_{\\Upsilon}]$. We confirm the previous calculation of $\\mathcal{O}(\\alpha_s)$ corrections on a diagram-by-diagram basis, with the accuracy significantly improved. For $J/\\psi$ hadronic decay, we find that the ${\\mathcal O}(\\alpha_sv^2)$ corrections are moderate and positive, nevertheless unable to counterbalance the huge negative corrections. On the other hand, the effect of ${\\mathcal O}(\\alpha_sv^2)$ corrections for $\\Upsilon(nS)$ is sensitive to the $\\mathcal{O}(v^2)$ NRQCD matrix elements. With the appropriate choice of the NRQCD matrix elements, our theoretical predictions for the decay rates may be consistent with the experimental data for $\\Upsilon(1S,2S)\\to {\\rm LH}$. As a byproduct, we also present the theoretical predictions for the branching ratio of $J/\\psi(\\Upsilon)\\to 3\\gamma$ accurate up to $\\mathcal{O}(\\alpha_s v^2)$.","PeriodicalId":8457,"journal":{"name":"arXiv: High Energy Physics - Phenomenology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.094021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Within the nonrelativistic QCD (NRQCD) factorization framework, we compute the ${\mathcal O}(\alpha_s v^2)$ corrections to the hadronic decay rate of vector quarkonia, exemplified by $J/\psi$ and $\Upsilon$. Setting both the renormalization and NRQCD factorization scales to be $m_Q$, we obtain $\Gamma(J/\psi\to {\rm LH})= 0.0716\frac{\alpha_s^3}{m_c^2} \langle \mathcal{O}_1({}^3S_1)\rangle_{J/\psi} [1-1.19\alpha_s+(-5.32+3.03\alpha_s)\langle v^2\rangle_{J/\psi}]$ and $\Gamma(\Upsilon\to {\rm LH})= 0.0716\frac{\alpha_s^3}{m_b^2}\langle\mathcal{O}_1({}^3S_1)\rangle_{\Upsilon}[1-1.56\alpha_s+(-5.32+4.61\alpha_s)\langle v^2\rangle_{\Upsilon}]$. We confirm the previous calculation of $\mathcal{O}(\alpha_s)$ corrections on a diagram-by-diagram basis, with the accuracy significantly improved. For $J/\psi$ hadronic decay, we find that the ${\mathcal O}(\alpha_sv^2)$ corrections are moderate and positive, nevertheless unable to counterbalance the huge negative corrections. On the other hand, the effect of ${\mathcal O}(\alpha_sv^2)$ corrections for $\Upsilon(nS)$ is sensitive to the $\mathcal{O}(v^2)$ NRQCD matrix elements. With the appropriate choice of the NRQCD matrix elements, our theoretical predictions for the decay rates may be consistent with the experimental data for $\Upsilon(1S,2S)\to {\rm LH}$. As a byproduct, we also present the theoretical predictions for the branching ratio of $J/\psi(\Upsilon)\to 3\gamma$ accurate up to $\mathcal{O}(\alpha_s v^2)$.
向量夸克子强子衰变的O(αsv2)修正
在非相对论QCD (NRQCD)分解框架中,我们计算了${\mathcal O}(\alpha_s v^2)$对矢量夸克子的强子衰变率的修正,以$J/\psi$和$\Upsilon$为例。将重整化和NRQCD分解尺度设为$m_Q$,得到$\Gamma(J/\psi\to {\rm LH})= 0.0716\frac{\alpha_s^3}{m_c^2} \langle \mathcal{O}_1({}^3S_1)\rangle_{J/\psi} [1-1.19\alpha_s+(-5.32+3.03\alpha_s)\langle v^2\rangle_{J/\psi}]$和$\Gamma(\Upsilon\to {\rm LH})= 0.0716\frac{\alpha_s^3}{m_b^2}\langle\mathcal{O}_1({}^3S_1)\rangle_{\Upsilon}[1-1.56\alpha_s+(-5.32+4.61\alpha_s)\langle v^2\rangle_{\Upsilon}]$。我们在逐图的基础上确认了之前的$\mathcal{O}(\alpha_s)$修正计算,精度显著提高。对于$J/\psi$强子衰变,我们发现${\mathcal O}(\alpha_sv^2)$修正是温和的和正的,但无法抵消巨大的负修正。另一方面,${\mathcal O}(\alpha_sv^2)$对$\Upsilon(nS)$的修正效应对$\mathcal{O}(v^2)$ NRQCD矩阵元素很敏感。通过适当选择NRQCD矩阵元素,我们对衰减率的理论预测可能与$\Upsilon(1S,2S)\to {\rm LH}$的实验数据一致。作为副产品,我们还提出了对$J/\psi(\Upsilon)\to 3\gamma$分支比的理论预测,精确到$\mathcal{O}(\alpha_s v^2)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信