{"title":"Transverse liquid composite moulding processes for advanced composites material manufacturing","authors":"Jeeeun Lee, M. Duhovic, T. Allen, P. Kelly","doi":"10.1080/14658011.2022.2108983","DOIUrl":null,"url":null,"abstract":"ABSTRACT The hydrodynamic compaction behaviour in transverse (through-thickness) impregnation variants of Liquid Composite Moulding (LCM) results in a non-homogeneous fibre volume fraction distribution. A fully coupled simulation model of the entire family of transverse resin infusion/compression processes is presented, which simulates the hydrodynamic compaction behaviour and predicts the process time, fluid pressure, effective stress, and fibre volume fraction distribution. The model is applied to the compression of a saturated preform stack, resin injection into a dry preform, and Compression Resin Transfer Moulding. The simulations are verified using analytic solutions and validated against experimental results from the literature. Special forms of the constitutive equations are constructed to lead to a constant diffusion coefficient, and the resulting model is solved semi-analytically. The results are used to verify the full non-linear simulation model. Additionally, it is shown that assumptions of quasi-steady flow and uniform deformation introduce significant errors in processes involving direct piston compaction of the fibre preform.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"62 1","pages":"373 - 382"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2022.2108983","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The hydrodynamic compaction behaviour in transverse (through-thickness) impregnation variants of Liquid Composite Moulding (LCM) results in a non-homogeneous fibre volume fraction distribution. A fully coupled simulation model of the entire family of transverse resin infusion/compression processes is presented, which simulates the hydrodynamic compaction behaviour and predicts the process time, fluid pressure, effective stress, and fibre volume fraction distribution. The model is applied to the compression of a saturated preform stack, resin injection into a dry preform, and Compression Resin Transfer Moulding. The simulations are verified using analytic solutions and validated against experimental results from the literature. Special forms of the constitutive equations are constructed to lead to a constant diffusion coefficient, and the resulting model is solved semi-analytically. The results are used to verify the full non-linear simulation model. Additionally, it is shown that assumptions of quasi-steady flow and uniform deformation introduce significant errors in processes involving direct piston compaction of the fibre preform.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.