Privacy Preserving Federated RSRP Estimation for Future Mobile Networks

Omer Haliloglu, Elif Ustundag Soykan, Abdulrahman Alabbasi
{"title":"Privacy Preserving Federated RSRP Estimation for Future Mobile Networks","authors":"Omer Haliloglu, Elif Ustundag Soykan, Abdulrahman Alabbasi","doi":"10.1109/GCWkshps52748.2021.9682084","DOIUrl":null,"url":null,"abstract":"Leveraging location information for machine learning applications in mobile networks is challenging due to the distributed nature of the data and privacy concerns. Federated Learning (FL) helps to tackle these issues and is a big step towards enabling privacy-aware distributed model training; however still prone to sophisticated privacy attacks such as membership inference. In this paper, we implement an FL approach to estimate Reference Signal Received Power (RSRP) values using geographical location information of the user equipment. We propose a privacy-preserving mechanism using differential privacy to protect against privacy attacks and demonstrate the impacts and the privacy-utility trade-off via privacy accounting measures.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"40 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Leveraging location information for machine learning applications in mobile networks is challenging due to the distributed nature of the data and privacy concerns. Federated Learning (FL) helps to tackle these issues and is a big step towards enabling privacy-aware distributed model training; however still prone to sophisticated privacy attacks such as membership inference. In this paper, we implement an FL approach to estimate Reference Signal Received Power (RSRP) values using geographical location information of the user equipment. We propose a privacy-preserving mechanism using differential privacy to protect against privacy attacks and demonstrate the impacts and the privacy-utility trade-off via privacy accounting measures.
未来移动网络隐私保护联邦RSRP估计
由于数据的分布式特性和隐私问题,在移动网络中利用位置信息进行机器学习应用具有挑战性。联邦学习(FL)有助于解决这些问题,是实现隐私感知分布式模型训练的一大步;然而,仍然容易受到复杂的隐私攻击,如成员推理。在本文中,我们实现了一种利用用户设备的地理位置信息估计参考信号接收功率(RSRP)值的FL方法。我们提出了一种使用差分隐私来防止隐私攻击的隐私保护机制,并通过隐私会计措施展示了其影响和隐私效用权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信