STEM: a spatio-temporal miner for bursty activity

Theodoros Lappas, Marcos R. Vieira, D. Gunopulos, V. Tsotras
{"title":"STEM: a spatio-temporal miner for bursty activity","authors":"Theodoros Lappas, Marcos R. Vieira, D. Gunopulos, V. Tsotras","doi":"10.1145/2463676.2463688","DOIUrl":null,"url":null,"abstract":"Burst identification has been extensively studied in the context of document streams, where a burst is generally exhibited when an unusually high frequency is observed for a term t. Previous works have focused exclusively on either temporal or spatial burstiness patterns. The former represents bursty timeframes within a single stream, while the latter characterizes sets of streams that simultaneously exhibited a bursty behavior for a user-specified timeframe. Our previous work was the first to study the spatiotemporal burstiness of terms. In this context, a burstiness pattern consists of both a timeframe and a set of streams, both of which need to be identified automatically. In this paper we describe STEM (Spatio-TEmporal Miner), a system for finding spatiotemporal burstiness patterns in a collection of spatially distributed frequency streams. STEM implements the full functionality required to mine spatiotemporal burstiness patterns from virtually any collection of geostamped streams. Examples of such collections include document streams (e.g. online newspapers), geo-aware microblogging platforms (e.g. Twitter). This paper describes the STEM system and discusses how its features can be accessed via a user-friendly interface.","PeriodicalId":87344,"journal":{"name":"Proceedings. ACM-SIGMOD International Conference on Management of Data","volume":"40 1","pages":"1021-1024"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM-SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463676.2463688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Burst identification has been extensively studied in the context of document streams, where a burst is generally exhibited when an unusually high frequency is observed for a term t. Previous works have focused exclusively on either temporal or spatial burstiness patterns. The former represents bursty timeframes within a single stream, while the latter characterizes sets of streams that simultaneously exhibited a bursty behavior for a user-specified timeframe. Our previous work was the first to study the spatiotemporal burstiness of terms. In this context, a burstiness pattern consists of both a timeframe and a set of streams, both of which need to be identified automatically. In this paper we describe STEM (Spatio-TEmporal Miner), a system for finding spatiotemporal burstiness patterns in a collection of spatially distributed frequency streams. STEM implements the full functionality required to mine spatiotemporal burstiness patterns from virtually any collection of geostamped streams. Examples of such collections include document streams (e.g. online newspapers), geo-aware microblogging platforms (e.g. Twitter). This paper describes the STEM system and discusses how its features can be accessed via a user-friendly interface.
STEM:突发活动的时空挖掘者
突发识别已经在文档流的背景下得到了广泛的研究,其中突发通常是在观察到一个术语t的异常高频时表现出来的。以前的工作只集中在时间或空间突发模式上。前者表示单个流中的突发时间框架,而后者表征同时在用户指定的时间框架内显示突发行为的流集。我们之前的工作是第一个研究术语的时空突发性。在此上下文中,突发模式由时间框架和一组流组成,这两者都需要自动识别。在本文中,我们描述了STEM(时空挖掘器),一个用于在空间分布的频率流集合中寻找时空突发性模式的系统。STEM实现了从几乎任何地理标记流的集合中挖掘时空突发模式所需的全部功能。此类集合的例子包括文档流(如在线报纸)、地理感知微博平台(如Twitter)。本文描述了STEM系统,并讨论了如何通过用户友好的界面访问其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信