{"title":"The crossing numbers of join products of eight graphs of order six with paths and cycles","authors":"M. Staš","doi":"10.15330/cmp.15.1.66-77","DOIUrl":null,"url":null,"abstract":"The crossing number $\\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. The main aim of this paper is to give the crossing numbers of the join products of eight graphs on six vertices with paths and cycles on $n$ vertices. The proofs are done with the help of several well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that do not cross the edges of the examined graphs.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.66-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The crossing number $\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. The main aim of this paper is to give the crossing numbers of the join products of eight graphs on six vertices with paths and cycles on $n$ vertices. The proofs are done with the help of several well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that do not cross the edges of the examined graphs.