{"title":"Achieving the Carbon-Neutral Production of Magnesia and Silica Products Using a HCl-Based Process in Serpentine Feedstock","authors":"David Konlechner, Gregor Kappacher","doi":"10.3390/materproc2021005019","DOIUrl":null,"url":null,"abstract":"Magnesia is mainly produced from carbonate sources (magnesite (MgCO3)), and seawater brines (MgCl2). The calcination of magnesite and the precipitation of brine using quicklime (CaO) are processes that have significant CO2 footprints, even before considering the burning of hydrocarbons required to meet the energy demand. There are also significant amounts of silica-based magnesia raw materials available worldwide, such as serpentine, dunite, and olivine. It is possible to produce synthetic MgO of high purity using a HCl-based process. HCl can be fully recycled and reused. If a carbon-neutral heating source such as electricity, synthetic fuel, or plasma is used for the pyrohydrolysis process, the result is the production of MgO via a carbon-neutral process.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesia is mainly produced from carbonate sources (magnesite (MgCO3)), and seawater brines (MgCl2). The calcination of magnesite and the precipitation of brine using quicklime (CaO) are processes that have significant CO2 footprints, even before considering the burning of hydrocarbons required to meet the energy demand. There are also significant amounts of silica-based magnesia raw materials available worldwide, such as serpentine, dunite, and olivine. It is possible to produce synthetic MgO of high purity using a HCl-based process. HCl can be fully recycled and reused. If a carbon-neutral heating source such as electricity, synthetic fuel, or plasma is used for the pyrohydrolysis process, the result is the production of MgO via a carbon-neutral process.