Positivity VS Negativity of Canonical Bases

IF 0.1 Q4 MATHEMATICS
Yiqiang Li, Weiqiang Wang
{"title":"Positivity VS Negativity of Canonical Bases","authors":"Yiqiang Li, Weiqiang Wang","doi":"10.21915/BIMAS.2018201","DOIUrl":null,"url":null,"abstract":"We provide examples for negativity of structure constants of the stably canonical basis of modified quantum $\\mathfrak{gl}_n$ and an analogous basis of modified quantum coideal algebra of $\\mathfrak{gl}_n$. In contrast, we construct the canonical basis of the modified quantum coideal algebra of $\\mathfrak{sl}_n$, establish the positivity of its structure constants, the positivity with respect to a geometric bilinear form as well as the positivity of its action on the tensor powers of the natural representation. The matrix coefficients of the transfer map on these Schur algebras with respect to the canonical bases are shown to be positive. Formulas for canonical basis of the iSchur algebra of rank one are obtained.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"38 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2015-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 31

Abstract

We provide examples for negativity of structure constants of the stably canonical basis of modified quantum $\mathfrak{gl}_n$ and an analogous basis of modified quantum coideal algebra of $\mathfrak{gl}_n$. In contrast, we construct the canonical basis of the modified quantum coideal algebra of $\mathfrak{sl}_n$, establish the positivity of its structure constants, the positivity with respect to a geometric bilinear form as well as the positivity of its action on the tensor powers of the natural representation. The matrix coefficients of the transfer map on these Schur algebras with respect to the canonical bases are shown to be positive. Formulas for canonical basis of the iSchur algebra of rank one are obtained.
标准碱基的正性与负性
我们给出了修正量子$\mathfrak{gl}_n$稳定正则基的结构常数的负性的例子和修正量子共理想代数$\mathfrak{gl}_n$的类似基。相反,我们构造了$\mathfrak{sl}_n$的修正量子共理想代数的正则基,建立了它的结构常数的正性,它对几何双线性形式的正性,以及它对自然表示的张量幂的作用的正性。证明了这些Schur代数上关于正则基的迁移映射的矩阵系数是正的。得到了秩1的iSchur代数的正则基的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信