{"title":"Time-optimal of fixed wing UAV aircraft with input and output constraints","authors":"M. H. Shavakh, B. Bidabad","doi":"10.3934/naco.2021023","DOIUrl":null,"url":null,"abstract":"The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \\begin{document}$ SQP $\\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \begin{document}$ SQP $\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.
The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \begin{document}$ SQP $\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.