Time-optimal of fixed wing UAV aircraft with input and output constraints

IF 1.1 Q2 MATHEMATICS, APPLIED
M. H. Shavakh, B. Bidabad
{"title":"Time-optimal of fixed wing UAV aircraft with input and output constraints","authors":"M. H. Shavakh, B. Bidabad","doi":"10.3934/naco.2021023","DOIUrl":null,"url":null,"abstract":"The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \\begin{document}$ SQP $\\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \begin{document}$ SQP $\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.
具有输入和输出约束的固定翼无人机时间优化
The route prediction of unmanned aerial vehicles (UAVs) according to their missions is a strategic issue in the aviation field. In some particular missions, the UAV tasks are to start a movement from a defined point to a target reign in the shortest time. This paper proposes a practical method to find the guidance law of the fixed-wing UAV to achieve time-optimal considering the ambient wind. The unique features of this paper are that the environment includes the moving and fixed obstacles as the route constraints, and the fixed-wing UAVs have to keep a given distance from these obstacles. Also, we consider the specific kinematic equation of the fixed-wing UAV and limitations on the flight-path angle and bank-angles as other constraints. We suggest a method for controlling a fixed-wing UAV to get time-optimal using the re-scaling and parameterization techniques. These techniques are useful and effective in maximizing the performance of the gradient-based methods as a sequential quadratic programming method ( \begin{document}$ SQP $\end{document} ) for numerical solutions. Then, all constraints of the time-optimal control problem are converted to a constraint using an exact penalty function. Due to being exact, finding the control variables and switching times is more accurate and faster. Finally, some numerical examples are simulated to explore the effectiveness of our proposed study in reality.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信