{"title":"Hypergraph Artificial Benchmark for Community Detection (h-ABCD)","authors":"Bogumil Kami'nski, P. Prałat, F. Théberge","doi":"10.48550/arXiv.2210.15009","DOIUrl":null,"url":null,"abstract":"\n The Artificial Benchmark for Community Detection (ABCD) graph is a recently introduced random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known Lancichinetti, Fortunato, Radicchi (LFR) one, and its main parameter ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter μ. In this article, we introduce hypergraph counterpart of the ABCD model, h–ABCD, which also produces random hypergraph with distributions of ground-truth community sizes and degrees following power-law. As in the original ABCD, the new model h–ABCD can produce hypergraphs with various levels of noise. More importantly, the model is flexible and can mimic any desired level of homogeneity of hyperedges that fall into one community. As a result, it can be used as a suitable, synthetic playground for analyzing and tuning hypergraph community detection algorithms.\n [Received on 22 October 2022; editorial decision on 18 July 2023; accepted on 19 July 2023]","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.15009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
The Artificial Benchmark for Community Detection (ABCD) graph is a recently introduced random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known Lancichinetti, Fortunato, Radicchi (LFR) one, and its main parameter ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter μ. In this article, we introduce hypergraph counterpart of the ABCD model, h–ABCD, which also produces random hypergraph with distributions of ground-truth community sizes and degrees following power-law. As in the original ABCD, the new model h–ABCD can produce hypergraphs with various levels of noise. More importantly, the model is flexible and can mimic any desired level of homogeneity of hyperedges that fall into one community. As a result, it can be used as a suitable, synthetic playground for analyzing and tuning hypergraph community detection algorithms.
[Received on 22 October 2022; editorial decision on 18 July 2023; accepted on 19 July 2023]
ABCD (Artificial Benchmark for Community Detection)图是近年来提出的一种随机图模型,它具有社团结构和社团大小的幂律分布。该模型生成的图与著名的Lancichinetti, Fortunato, Radicchi (LFR)模型具有相似的性质,并且其主要参数ξ可以被调整以模拟LFR模型中的对应参数,即混合参数μ。在本文中,我们引入了ABCD模型的对应超图h-ABCD, h-ABCD也产生了基于真值社区大小和度服从幂律分布的随机超图。与原来的ABCD一样,新模型h-ABCD可以产生具有不同程度噪声的超图。更重要的是,该模型是灵活的,可以模拟属于一个社区的任何期望级别的超边缘同质性。因此,它可以作为一个合适的综合平台,用于分析和调优超图社区检测算法。[2022年10月22日收到;2023年7月18日的编辑决定;于2023年7月19日接受]