Synthetic Power Analyses: Empirical Evaluation and Application to Cognitive Neuroimaging

Peiye Zhuang, Bliss Chapman, Ran Li, Oluwasanmi Koyejo
{"title":"Synthetic Power Analyses: Empirical Evaluation and Application to Cognitive Neuroimaging","authors":"Peiye Zhuang, Bliss Chapman, Ran Li, Oluwasanmi Koyejo","doi":"10.1109/IEEECONF44664.2019.9048971","DOIUrl":null,"url":null,"abstract":"In the experimental sciences, statistical power analyses are often used before data collection to determine the required sample size. However, traditional power analyses can be costly when data are difficult or expensive to collect. We propose synthetic power analyses; a framework for estimating statistical power at various sample sizes, and empirically explore the performance of synthetic power analysis for sample size selection in cognitive neuroscience experiments. To this end, brain imaging data is synthesized using an implicit generative model conditioned on observed cognitive processes. Further, we propose a simple procedure to modify the statistical tests which result in conservative statistics. Our empirical results suggest that synthetic power analysis could be a low-cost alternative to pilot data collection when the proposed experiments share cognitive processes with previously conducted experiments.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"102 1","pages":"1192-1196"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the experimental sciences, statistical power analyses are often used before data collection to determine the required sample size. However, traditional power analyses can be costly when data are difficult or expensive to collect. We propose synthetic power analyses; a framework for estimating statistical power at various sample sizes, and empirically explore the performance of synthetic power analysis for sample size selection in cognitive neuroscience experiments. To this end, brain imaging data is synthesized using an implicit generative model conditioned on observed cognitive processes. Further, we propose a simple procedure to modify the statistical tests which result in conservative statistics. Our empirical results suggest that synthetic power analysis could be a low-cost alternative to pilot data collection when the proposed experiments share cognitive processes with previously conducted experiments.
综合功率分析:经验评价及在认知神经影像学中的应用
在实验科学中,统计能力分析通常在数据收集之前使用,以确定所需的样本量。然而,当收集数据困难或昂贵时,传统的功率分析可能代价高昂。我们提出综合功率分析;建立了一个估算不同样本容量下统计功率的框架,并对认知神经科学实验中样本容量选择中综合功率分析的性能进行了实证探讨。为此,脑成像数据是综合使用一个隐式生成模型的条件下观察到的认知过程。此外,我们提出了一个简单的程序来修改统计检验结果保守统计。我们的实证结果表明,当提出的实验与先前进行的实验共享认知过程时,合成功率分析可能是试点数据收集的低成本替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信