{"title":"Origins of Soft-Sediment Deformation Structures from the Batang Paleodammed Lakes in the Upper Jinsha River, SE Tibetan Plateau","authors":"Y. Teng, Jian Chen, Z. Cui, Weichao Li, Yan Li","doi":"10.4172/2381-8719.1000306","DOIUrl":null,"url":null,"abstract":"Multiple levels of preserved soft-sediment deformation structures occur in sediments deposited in the paleodammed lakes in the Batang-Zhongza reaches of the upper Jinsha River Valley, southeast Tibetan Plateau. These deformation structures include folded layers, convoluted layers, ball-and-pillow structures, recumbent lamination, waterescape structures, and small-scale landslide. Combining the assessments of depositional facies, potential triggers, paleoenvironmental context, we conclude that the probable trigger agents of this deformation were earthquakes, slides, and debris flows. The seismically-induced soft-sediment deformation structures provide new substantial evidence for the existence of active tectonics and paleo-earthquakes in the Batang area since the Holocene.","PeriodicalId":80381,"journal":{"name":"AGSO journal of Australian geology & geophysics","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGSO journal of Australian geology & geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2381-8719.1000306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Multiple levels of preserved soft-sediment deformation structures occur in sediments deposited in the paleodammed lakes in the Batang-Zhongza reaches of the upper Jinsha River Valley, southeast Tibetan Plateau. These deformation structures include folded layers, convoluted layers, ball-and-pillow structures, recumbent lamination, waterescape structures, and small-scale landslide. Combining the assessments of depositional facies, potential triggers, paleoenvironmental context, we conclude that the probable trigger agents of this deformation were earthquakes, slides, and debris flows. The seismically-induced soft-sediment deformation structures provide new substantial evidence for the existence of active tectonics and paleo-earthquakes in the Batang area since the Holocene.