Parameter Design of Conformal PML Based on 2D Monostatic RCS Optimization

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Y. Zhang, Xiaofeng Deng
{"title":"Parameter Design of Conformal PML Based on 2D Monostatic RCS Optimization","authors":"Y. Zhang, Xiaofeng Deng","doi":"10.47037/2020.aces.j.360614","DOIUrl":null,"url":null,"abstract":"In this study, 2D finite element (FE) solving process with the conformal perfectly matched layer (PML) is elucidated to perform the electromagnetic scattering computation. With the 2D monostatic RCS as the optimization objective, a sensitivity analysis of the basic design parameters of conformal PML (e.g., layer thickness, loss factor, extension order and layer number) is conducted to identify the major parameters of conformal PML that exerts more significant influence on 2D RCS. Lastly, the major design parameters of conformal PML are optimized by the simulated annealing algorithm (SA). As revealed from the numerical examples, the parameter design and optimization method of conformal PML based on SA is capable of enhancing the absorption effect exerted by the conformal PML and decreasing the error of the RCS calculation. It is anticipated that the parameter design method of conformal PML based on RCS optimization can be applied to the cognate absorbing boundary and 3D electromagnetic computation.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360614","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, 2D finite element (FE) solving process with the conformal perfectly matched layer (PML) is elucidated to perform the electromagnetic scattering computation. With the 2D monostatic RCS as the optimization objective, a sensitivity analysis of the basic design parameters of conformal PML (e.g., layer thickness, loss factor, extension order and layer number) is conducted to identify the major parameters of conformal PML that exerts more significant influence on 2D RCS. Lastly, the major design parameters of conformal PML are optimized by the simulated annealing algorithm (SA). As revealed from the numerical examples, the parameter design and optimization method of conformal PML based on SA is capable of enhancing the absorption effect exerted by the conformal PML and decreasing the error of the RCS calculation. It is anticipated that the parameter design method of conformal PML based on RCS optimization can be applied to the cognate absorbing boundary and 3D electromagnetic computation.
基于二维单稳态RCS优化的保形PML参数设计
本文阐述了采用保形完美匹配层(PML)进行二维有限元求解的过程,以进行电磁散射计算。以二维单静RCS为优化目标,对保形PML的基本设计参数(如层厚、损耗因子、延伸阶数、层数)进行灵敏度分析,找出对二维RCS影响更显著的保形PML的主要参数。最后,利用模拟退火算法对共形PML的主要设计参数进行了优化。数值算例表明,基于SA的保形PML参数设计与优化方法能够增强保形PML的吸收效果,减小RCS计算误差。期望基于RCS优化的保形PML参数设计方法可以应用于相干吸收边界和三维电磁计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信