A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source

IF 1.9 3区 数学 Q2 Mathematics
Haitao Leng, Yanping Chen
{"title":"A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source","authors":"Haitao Leng, Yanping Chen","doi":"10.1051/m2an/2022005","DOIUrl":null,"url":null,"abstract":"In this paper,\n\nwe investigate a hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac measures.\n\nUnder assumption that the domain is convex and the mesh is quasi-uniform, a priori error estimate for the error in $L^2$-norm\n\nis proved. By duality argument and Oswald interpolation, a posteriori error estimates for the errors in $L^2$-norm and $W^{1,p}$-seminorm\n\nare also obtained. Finally, numerical examples are provided to validate the theoretical analysis.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":"137 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate a hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is quasi-uniform, a priori error estimate for the error in $L^2$-norm is proved. By duality argument and Oswald interpolation, a posteriori error estimates for the errors in $L^2$-norm and $W^{1,p}$-seminorm are also obtained. Finally, numerical examples are provided to validate the theoretical analysis.
二阶椭圆方程的可杂化不连续Galerkin方法
研究了具有Dirac测度的二阶椭圆方程的可杂化不连续Galerkin方法。在假设域是凸的,网格是准均匀的情况下,证明了L^2$-范数误差的先验误差估计。通过对偶论证和Oswald插值,得到了$L^2$-norm和$W^{1,p}$- semormare误差的后验误差估计。最后通过数值算例验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信