Consistent labeling of rotating maps

IF 0.4 Q4 MATHEMATICS
Andreas Gemsa, M. Nöllenburg, Ignaz Rutter
{"title":"Consistent labeling of rotating maps","authors":"Andreas Gemsa, M. Nöllenburg, Ignaz Rutter","doi":"10.20382/jocg.v7i1a15","DOIUrl":null,"url":null,"abstract":"Dynamic maps that allow continuous map rotations, e.g., on mobile devices, encounter new issues unseen in static map labeling before. We study the following dynamic map labeling problem: The input is a static, labeled map, i.e., a set P of points in the plane with attached non-overlapping horizontal rectangular labels. The goal is to find a consistent labeling of P under rotation that maximizes the number of visible labels for all rotation angles such that the labels remain horizontal while the map is rotated. A labeling is consistent if a single active interval of angles is selected for each label such that labels neither intersect each other nor occlude points in P at any rotation angle. \n \nWe first introduce a general model for labeling rotating maps and derive basic geometric properties of consistent solutions. We show NP-completeness of the active interval maximization problem even for unit-square labels. We then present a constant-factor approximation for this problem based on line stabbing, and refine it further into an EPTAS. Finally, we extend the EPTAS to the more general setting of rectangular labels of bounded size and aspect ratio.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"13 1","pages":"451-462"},"PeriodicalIF":0.4000,"publicationDate":"2011-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 32

Abstract

Dynamic maps that allow continuous map rotations, e.g., on mobile devices, encounter new issues unseen in static map labeling before. We study the following dynamic map labeling problem: The input is a static, labeled map, i.e., a set P of points in the plane with attached non-overlapping horizontal rectangular labels. The goal is to find a consistent labeling of P under rotation that maximizes the number of visible labels for all rotation angles such that the labels remain horizontal while the map is rotated. A labeling is consistent if a single active interval of angles is selected for each label such that labels neither intersect each other nor occlude points in P at any rotation angle. We first introduce a general model for labeling rotating maps and derive basic geometric properties of consistent solutions. We show NP-completeness of the active interval maximization problem even for unit-square labels. We then present a constant-factor approximation for this problem based on line stabbing, and refine it further into an EPTAS. Finally, we extend the EPTAS to the more general setting of rectangular labels of bounded size and aspect ratio.
旋转地图的一致标记
允许连续地图旋转的动态地图,例如,在移动设备上,遇到了以前静态地图标记中看不到的新问题。我们研究了以下动态地图标注问题:输入是一个静态的、有标注的地图,即平面上的P个点的集合,这些点带有不重叠的水平矩形标签。我们的目标是在旋转下找到一个一致的P标签,使所有旋转角度的可见标签数量最大化,以便在旋转地图时标签保持水平。如果为每个标签选择一个单一的有效角度间隔,使得标签在任何旋转角度上既不相交也不遮挡P中的点,则标记是一致的。我们首先介绍了旋转映射标记的一般模型,并推导了一致解的基本几何性质。我们证明了即使对于单位平方标记,主动区间最大化问题的np完备性。然后,我们提出了一个基于线刺法的常因子近似,并将其进一步细化为EPTAS。最后,我们将EPTAS扩展到更一般的有界大小和宽高比的矩形标签设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信