High and low perturbations of Choquard equations with critical reaction and variable growth

Youpei Zhang, Xianhua Tang, V. Rǎdulescu
{"title":"High and low perturbations of Choquard equations with critical reaction and variable growth","authors":"Youpei Zhang, Xianhua Tang, V. Rǎdulescu","doi":"10.3934/dcds.2021180","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ - \\Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ = \\left( \\int_{\\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\\lambda(x,y)} dy\\right) |u|^{r(x)-2} u+g(x,u)\\ \\mbox{in}\\ \\mathbb R^N, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the exponent <inline-formula><tex-math id=\"M1\">\\begin{document}$ r(\\cdot) $\\end{document}</tex-math></inline-formula> is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation <inline-formula><tex-math id=\"M2\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity <inline-formula><tex-math id=\"M3\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation

where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.

具有临界反应和变增长的Choquard方程的高低摄动
We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation \begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document} \begin{document}$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $\end{document} where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信