{"title":"High and low perturbations of Choquard equations with critical reaction and variable growth","authors":"Youpei Zhang, Xianhua Tang, V. Rǎdulescu","doi":"10.3934/dcds.2021180","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ - \\Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ = \\left( \\int_{\\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\\lambda(x,y)} dy\\right) |u|^{r(x)-2} u+g(x,u)\\ \\mbox{in}\\ \\mathbb R^N, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the exponent <inline-formula><tex-math id=\"M1\">\\begin{document}$ r(\\cdot) $\\end{document}</tex-math></inline-formula> is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation <inline-formula><tex-math id=\"M2\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity <inline-formula><tex-math id=\"M3\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation
\begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document}
where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.
We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation \begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document} \begin{document}$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $\end{document} where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.