DataXFormer: A robust transformation discovery system

Ziawasch Abedjan, J. Morcos, I. Ilyas, M. Ouzzani, Paolo Papotti, M. Stonebraker
{"title":"DataXFormer: A robust transformation discovery system","authors":"Ziawasch Abedjan, J. Morcos, I. Ilyas, M. Ouzzani, Paolo Papotti, M. Stonebraker","doi":"10.1109/ICDE.2016.7498319","DOIUrl":null,"url":null,"abstract":"In data integration, data curation, and other data analysis tasks, users spend a considerable amount of time converting data from one representation to another. For example US dates to European dates or airport codes to city names. In a previous vision paper, we presented the initial design of DataXFormer, a system that uses web resources to assist in transformation discovery. Specifically, DataXFormer discovers possible transformations from web tables and web forms and involves human feedback where appropriate. In this paper, we present the full fledged system along with several extensions. In particular, we present algorithms to find (i) transformations that entail multiple columns of input data, (ii) indirect transformations that are compositions of other transformations, (iii) transformations that are not functions but rather relationships, and (iv) transformations from a knowledge base of public data. We report on experiments with a collection of 120 transformation tasks, and show our enhanced system automatically covers 101 of them by using openly available resources.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"99 1","pages":"1134-1145"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In data integration, data curation, and other data analysis tasks, users spend a considerable amount of time converting data from one representation to another. For example US dates to European dates or airport codes to city names. In a previous vision paper, we presented the initial design of DataXFormer, a system that uses web resources to assist in transformation discovery. Specifically, DataXFormer discovers possible transformations from web tables and web forms and involves human feedback where appropriate. In this paper, we present the full fledged system along with several extensions. In particular, we present algorithms to find (i) transformations that entail multiple columns of input data, (ii) indirect transformations that are compositions of other transformations, (iii) transformations that are not functions but rather relationships, and (iv) transformations from a knowledge base of public data. We report on experiments with a collection of 120 transformation tasks, and show our enhanced system automatically covers 101 of them by using openly available resources.
DataXFormer:一个健壮的转换发现系统
在数据集成、数据管理和其他数据分析任务中,用户花费大量时间将数据从一种表示转换为另一种表示。例如,美国日期转换为欧洲日期或机场代码转换为城市名称。在之前的愿景论文中,我们介绍了DataXFormer的初始设计,这是一个使用web资源来协助发现转换的系统。具体来说,DataXFormer从web表和web表单中发现可能的转换,并在适当的地方包含人工反馈。在本文中,我们给出了一个完整的系统以及几个扩展。特别是,我们提出了寻找(i)需要多列输入数据的转换的算法,(ii)由其他转换组成的间接转换,(iii)不是函数而是关系的转换,以及(iv)来自公共数据知识库的转换。我们报告了120个转换任务集合的实验,并显示我们的增强系统通过使用公开可用的资源自动覆盖其中的101个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信