Reversible part of quantum dynamical systems: A review

Q4 Mathematics
Carlo Pandiscia
{"title":"Reversible part of quantum dynamical systems: A review","authors":"Carlo Pandiscia","doi":"10.5802/cml.50","DOIUrl":null,"url":null,"abstract":"In this work a quantum dynamical system (M, Φ, φ) is constituted by a von Neumann algebra M, a unital Schwartz map Φ : M → M and a Φ-invariant normal faithful state φ on M. We will prove that the ergodic properties of a quantum dynamical system are determined by its reversible part (D∞, Φ∞, φ∞); i.e. by a von Neumann sub-algebra D∞ of M, with an automorphism Φ∞ and a normal state φ∞, as the restrictions on D∞. Moreover, if D∞ is a trivial algebra, then the quantum dynamical system is ergodic. Furthermore, we will show some properties of reversible part of the quantum dynamical system, finally we will study its relations with the canonical decomposition of Nagy-Fojas of linear contraction related to a quantum dynamical system.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work a quantum dynamical system (M, Φ, φ) is constituted by a von Neumann algebra M, a unital Schwartz map Φ : M → M and a Φ-invariant normal faithful state φ on M. We will prove that the ergodic properties of a quantum dynamical system are determined by its reversible part (D∞, Φ∞, φ∞); i.e. by a von Neumann sub-algebra D∞ of M, with an automorphism Φ∞ and a normal state φ∞, as the restrictions on D∞. Moreover, if D∞ is a trivial algebra, then the quantum dynamical system is ergodic. Furthermore, we will show some properties of reversible part of the quantum dynamical system, finally we will study its relations with the canonical decomposition of Nagy-Fojas of linear contraction related to a quantum dynamical system.
量子动力系统的可逆部分:综述
在本文中,一个量子动力系统(M, Φ, Φ)由一个von Neumann代数M、一个一元Schwartz映射Φ: M→M和一个M上的Φ-invariant正态忠实态Φ组成。我们将证明一个量子动力系统的遍历性质是由它的可逆部分(D∞,Φ∞,Φ∞)决定的;即M的一个von Neumann子代数D∞,具有自同构Φ∞和正规态Φ∞,作为D∞上的限制。此外,如果D∞是平凡代数,则量子动力系统是遍历的。进一步,我们将展示量子动力系统可逆部分的一些性质,最后我们将研究它与量子动力系统线性收缩的Nagy-Fojas正则分解的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Confluentes Mathematici
Confluentes Mathematici Mathematics-Mathematics (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
5
期刊介绍: Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信