Criterion of the best non-symmetric approximant for multivariable functions in space $L_{1, p_2,...,p_n}$

Q4 Mathematics
M. Tkachenko, V. M. Traktynska
{"title":"Criterion of the best non-symmetric approximant for multivariable functions in space $L_{1, p_2,...,p_n}$","authors":"M. Tkachenko, V. M. Traktynska","doi":"10.15421/242109","DOIUrl":null,"url":null,"abstract":"The criterion of the best non-symmetric approximant for $n$-variable functions in the space $L_{1, p_2,...,p_n}$ $(1<p_i<+\\infty , i=2,3,...,n)$ with $(\\alpha ,\\beta )$-norm$$\\|f\\|_{1,p_2,...,p_n;\\alpha,\\beta}=\\left[\\int\\limits_{a_n}^{b_n}\\cdots\\left[\\int\\limits_{a_2}^{b_2}\\left[\\int\\limits_{a_1}^{b_1} |f(x)|_{\\alpha,\\beta} dx_1\\right]^{p_2} dx_2\\right]^{\\frac{p_3}{p_2}}\\cdots dx_n\\right]^{\\frac{1}{p_n}},$$where $0<\\alpha,\\beta<\\infty$, $\\ f_{+}(x)=\\max\\{f(x),0\\},\\ f_{-}(x)=\\max\\{-f(x),0\\},$ $\\mathrm{sgn}_{\\alpha,\\beta}f(x)=\\alpha\\cdot\\mathrm{sgn}f_{+}(x)-\\beta\\cdot\\mathrm{sgn}f_{-}(x),$ $|f|_{\\alpha,\\beta}=\\alpha \\cdot f_{+}+\\beta \\cdot f_{-} =f(x)\\cdot \\mathrm{sgn}_{\\alpha,\\beta}f(x)$, is obtained in the article.It is proved that if $P_m=\\sum\\limits_{k=1}^{m}c_k\\varphi_k$, where  $\\{\\varphi_k\\}_{k=1}^m$ is a linearly independent system functions of $L_{1,p_2,...,p_n}$, $c_k$ are real numbers, then the polynomial $P_m^{\\ast}$ is the best $(\\alpha ,\\beta )$-approximant for $f$ in the space $L_{1,p_2,...,p_n}$ $(1<p_i<\\infty $, $i=2,3,...,n)$, if and only if, for any polynomial $P_m$$$\\int \\limits_K P_m\\cdot F_0^{\\ast}dx \\leq \\int \\limits_{a_n}^{b_n}...\\int \\limits_{a_2}^{b_2}\\int \\limits_{e_{x_2,...,x_n}}|P_m|_{\\beta , \\alpha}dx_1 \\cdot \\operatorname *{ess \\,sup}_ {x_1 \\in [a_1,b_1]} |F_0^{\\ast}|_{\\frac{1}{\\alpha },\\frac{1}{\\beta }} dx_2...dx_n,$$where $K=[a_1,b_1]\\times \\ldots\\times [a_n,b_n],$ $e_{x_2,...,x_n}=\\{ x_1\\in [a_1,b_1] : f-P_m^{\\ast}=0\\},$$$F_0^{\\ast}=\\frac{|R_m^{\\ast}|_{1; \\alpha ,\\beta }^{p_2-1}|R_m^{\\ast}|_{1,p_2; \\alpha ,\\beta }^{p_3-p_2}\\cdot ... \\cdot |R_m^{\\ast}|_{1,p_2,...,p_{n-1}; \\alpha ,\\beta }^{p_n-p_{n-1}}\\mathrm{sgn}_{\\alpha ,\\beta} R_m^{\\ast}}{||R_m^{\\ast}||_{1,p_2,...,p_n; \\alpha ,\\beta}^{p_n-1}},$$|f|_{p_k,\\ldots,p_i;\\alpha,\\beta}=\\left[\\int\\limits_{a_i}^{b_i}\\ldots\\left[ \\int\\limits_{a_{k+1}}^{b_{k+1}}\\left[\\int\\limits_{a_k}^{b_k}|f|_{\\alpha,\\beta}^{p_k}dx_k\\right]^{\\frac{p_{k+1}}{p_k}}dx_{k+1} \\right]^{\\frac{p_{k+2}}{p_{k+1}}}\\ldots dx_i \\right]^{\\frac{1}{p_i}},$$($1\\leq k<i\\leq n$), $R_m^{\\ast}=f-P_m^{\\ast}$.This criterion is a generalization of the known Smirnov's criterion for functions of two variables, when $\\alpha =\\beta =1$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The criterion of the best non-symmetric approximant for $n$-variable functions in the space $L_{1, p_2,...,p_n}$ $(1
空间$L_{1, p_2,…,p_n}$中多变量函数的最佳非对称逼近准则
空间$L_{1, p_2,…中$n$变量函数的最佳非对称逼近准则, p_n} $ $ (1 < p_i < + \ infty, i = 2、3、…,n)与(\α,β\)美元美元规范$ $ f \ \ | | _ {1 p_2…,p_n; \α,β\}=左\ [int \ \ limits_ {an} ^ {b_n} \ cdots \离开[int \ \ limits_ {a₂}^ {b_2} \离开[int \ \ limits_ {a_1} ^ {b_1} | f (x) | _{\α,β\}dx_1 \右]^ {p_2} dx_2 \右]^{\压裂{p_3} {p_2}} \ cdots dx_n \右]^{\压裂{1}{p_n}}, $ $, $ 0 < \α,β\ < \ infty $,$ f {+} (x) = \ \马克斯\ \}{f (x), 0, f {-} (x) = \ \马克斯\ {- f (x), 0 \}, $ $ \ mathrm{胡志明市}_{\α,β\}f (x) = \α\ cdot \ mathrm f{+}{胡志明市}(x) -β\ \ cdot \ mathrm f{-}{胡志明市}(x) f $ $ | | _{\α,β\}= f{+} \α\ cdot +β\ \ cdot f {-} = f (x) \ cdot \ mathrm{胡志明市}_{\α,β\}f (x),美元了。证明了如果$P_m=\sum\limits_{k=1}^{m}c_k\varphi_k$,其中$\{\varphi_k\}_{k=1}^m$是$L_{1,p_2,…,p_n}$, $c_k$都是实数,那么多项式$P_m^{\ast}$是$f$在空间$L_{1,p_2,…中最好的$(\alpha,\beta)$-逼近。, p_n} $ $ (1 < p_i < \ infty $, $ i = 2, 3,…,n)美元,当且仅当,对于任何多项式P_m $ $美元\ int \ limits_K P_m \ cdot F_0 ^ {\ ast} dx \ leq \ int \ limits_ {an} ^ {b_n}…\int \limits_{a_2}^{b_2}\int \limits_{e_{x_2,…, x_n}} | P_m | _{\β\α}dx_1 \ cdot \ operatorname * {ess \,一口}_ {x_1 \在(a_1、b_1)} | F_0 ^ {\ ast} | _{\压裂{1}{\α}\压裂{1}{\β}}dx_2……dx_n, $ $ $ K = (a_1、b_1) \ \ ldots \乘以(an, b_n) $ $ e_ {x_2,……x_n} = \ {x_1 \ [a_1、b_1): f-P_m ^ {\ ast} = 0 \}, F_0美元$ $ ^ {\ ast} = \压裂{| R_m ^ {\ ast} | _ {1;\alpha,\beta}^{p_2-1}|R_m^{\ast}|_{1,p_2;\alpha,\beta}^{p_3-p_2}\cdot…\ cdot | R_m ^ {\ ast} | _ {1 p_2…,p_ {n};\α,β\}^ {p_n-p_ {n}} \ mathrm{胡志明市}_{\α,β\}R_m ^ {\ ast}} {| | R_m ^ {\ ast} | | _ {1 p_2…,p_n;\α,β\}^ {p_n-1}}, f $ $ | | _ {\ ldots p_k, p_i; \α,β\}=左\ [int \ \ limits_ {ai} ^ {b_i}左\ ldots \ [int \ \ limits_{现代{k + 1}} ^ {b_ {k + 1}}左\ [int \ \ limits_ {a_k} ^ {b_k} |女| _{\α,β\}^ {p_k} dx_k \右]^{\压裂{p_ {k + 1}} {p_k}} dx_ {k + 1} \右]^{\压裂{p_ {k + 2}} {p_ {k + 1}}} \ ldots dx_i正确\]^{\压裂{1}{p_i}}, $ $(1美元\ leq k <我\ leq n),美元R_m ^ {\ ast} = f-P_m ^ {\ ast} $。当$\ α =\ β =1$时,此准则是对已知的二元函数的Smirnov准则的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信