{"title":"Criterion of the best non-symmetric approximant for multivariable functions in space $L_{1, p_2,...,p_n}$","authors":"M. Tkachenko, V. M. Traktynska","doi":"10.15421/242109","DOIUrl":null,"url":null,"abstract":"The criterion of the best non-symmetric approximant for $n$-variable functions in the space $L_{1, p_2,...,p_n}$ $(1<p_i<+\\infty , i=2,3,...,n)$ with $(\\alpha ,\\beta )$-norm$$\\|f\\|_{1,p_2,...,p_n;\\alpha,\\beta}=\\left[\\int\\limits_{a_n}^{b_n}\\cdots\\left[\\int\\limits_{a_2}^{b_2}\\left[\\int\\limits_{a_1}^{b_1} |f(x)|_{\\alpha,\\beta} dx_1\\right]^{p_2} dx_2\\right]^{\\frac{p_3}{p_2}}\\cdots dx_n\\right]^{\\frac{1}{p_n}},$$where $0<\\alpha,\\beta<\\infty$, $\\ f_{+}(x)=\\max\\{f(x),0\\},\\ f_{-}(x)=\\max\\{-f(x),0\\},$ $\\mathrm{sgn}_{\\alpha,\\beta}f(x)=\\alpha\\cdot\\mathrm{sgn}f_{+}(x)-\\beta\\cdot\\mathrm{sgn}f_{-}(x),$ $|f|_{\\alpha,\\beta}=\\alpha \\cdot f_{+}+\\beta \\cdot f_{-} =f(x)\\cdot \\mathrm{sgn}_{\\alpha,\\beta}f(x)$, is obtained in the article.It is proved that if $P_m=\\sum\\limits_{k=1}^{m}c_k\\varphi_k$, where $\\{\\varphi_k\\}_{k=1}^m$ is a linearly independent system functions of $L_{1,p_2,...,p_n}$, $c_k$ are real numbers, then the polynomial $P_m^{\\ast}$ is the best $(\\alpha ,\\beta )$-approximant for $f$ in the space $L_{1,p_2,...,p_n}$ $(1<p_i<\\infty $, $i=2,3,...,n)$, if and only if, for any polynomial $P_m$$$\\int \\limits_K P_m\\cdot F_0^{\\ast}dx \\leq \\int \\limits_{a_n}^{b_n}...\\int \\limits_{a_2}^{b_2}\\int \\limits_{e_{x_2,...,x_n}}|P_m|_{\\beta , \\alpha}dx_1 \\cdot \\operatorname *{ess \\,sup}_ {x_1 \\in [a_1,b_1]} |F_0^{\\ast}|_{\\frac{1}{\\alpha },\\frac{1}{\\beta }} dx_2...dx_n,$$where $K=[a_1,b_1]\\times \\ldots\\times [a_n,b_n],$ $e_{x_2,...,x_n}=\\{ x_1\\in [a_1,b_1] : f-P_m^{\\ast}=0\\},$$$F_0^{\\ast}=\\frac{|R_m^{\\ast}|_{1; \\alpha ,\\beta }^{p_2-1}|R_m^{\\ast}|_{1,p_2; \\alpha ,\\beta }^{p_3-p_2}\\cdot ... \\cdot |R_m^{\\ast}|_{1,p_2,...,p_{n-1}; \\alpha ,\\beta }^{p_n-p_{n-1}}\\mathrm{sgn}_{\\alpha ,\\beta} R_m^{\\ast}}{||R_m^{\\ast}||_{1,p_2,...,p_n; \\alpha ,\\beta}^{p_n-1}},$$|f|_{p_k,\\ldots,p_i;\\alpha,\\beta}=\\left[\\int\\limits_{a_i}^{b_i}\\ldots\\left[ \\int\\limits_{a_{k+1}}^{b_{k+1}}\\left[\\int\\limits_{a_k}^{b_k}|f|_{\\alpha,\\beta}^{p_k}dx_k\\right]^{\\frac{p_{k+1}}{p_k}}dx_{k+1} \\right]^{\\frac{p_{k+2}}{p_{k+1}}}\\ldots dx_i \\right]^{\\frac{1}{p_i}},$$($1\\leq k<i\\leq n$), $R_m^{\\ast}=f-P_m^{\\ast}$.This criterion is a generalization of the known Smirnov's criterion for functions of two variables, when $\\alpha =\\beta =1$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The criterion of the best non-symmetric approximant for $n$-variable functions in the space $L_{1, p_2,...,p_n}$ $(1