{"title":"Semigroup quasivarieties: Two lattices and a reopened problem","authors":"Timothy J. Koussas","doi":"10.1142/S0218196721400026","DOIUrl":null,"url":null,"abstract":"We determine all quasivarieties of aperiodic semigroups that are contained in some residually finite variety. This endeavor was initially motivated by a problem in natural dualities, but our work here also serves as a partial correction to an error found in a result of Sapir from the 1980s.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"32 1","pages":"1013-1035"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721400026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We determine all quasivarieties of aperiodic semigroups that are contained in some residually finite variety. This endeavor was initially motivated by a problem in natural dualities, but our work here also serves as a partial correction to an error found in a result of Sapir from the 1980s.