Some remarks on segregation of $k$ species in strongly competing systems

IF 1.2 4区 数学 Q1 MATHEMATICS
F. Lanzara, Eugenio Montefusco
{"title":"Some remarks on segregation of $k$ species in strongly competing systems","authors":"F. Lanzara, Eugenio Montefusco","doi":"10.4171/ifb/458","DOIUrl":null,"url":null,"abstract":"Spatial segregation occurs in population dynamics when k species interact in a highly competitive way. As a model for the study of this phenomenon, we consider the competitiondiffusion system of k differential equations −∆ui(x) = −μui(x) ∑ j 6=i uj(x) i = 1, ..., k in a domain D with appropriate boundary conditions. Any ui represents a population density and the parameter μ determines the interaction strength between the populations. The purpose of this paper is to study the geometry of the limiting configuration as μ −→ +∞ on a planar domain for any number of species. If k is even we show that some limiting configurations are strictly connected to the solution of a Dirichlet problem for the Laplace equation. 2010 Mathematics Subject Classification: Primary 35Bxx, 35J47; Secondary 92D25.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"60 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Spatial segregation occurs in population dynamics when k species interact in a highly competitive way. As a model for the study of this phenomenon, we consider the competitiondiffusion system of k differential equations −∆ui(x) = −μui(x) ∑ j 6=i uj(x) i = 1, ..., k in a domain D with appropriate boundary conditions. Any ui represents a population density and the parameter μ determines the interaction strength between the populations. The purpose of this paper is to study the geometry of the limiting configuration as μ −→ +∞ on a planar domain for any number of species. If k is even we show that some limiting configurations are strictly connected to the solution of a Dirichlet problem for the Laplace equation. 2010 Mathematics Subject Classification: Primary 35Bxx, 35J47; Secondary 92D25.
强竞争系统中物种分离的若干问题
在种群动态中,当k个物种以高度竞争的方式相互作用时,就会发生空间分离。作为研究这一现象的模型,我们考虑了k微分方程的竞争扩散系统-∆ui(x) = - μui(x)∑j 6=i uj(x) i = 1,…,在具有适当边界条件的定义域D中的k。ui表示种群密度,参数μ决定种群之间的相互作用强度。本文的目的是研究平面上任意数量物种的极限位形μ−→+∞的几何性质。如果k是偶数,我们证明了一些极限构型与拉普拉斯方程的狄利克雷问题的解是严格相关的。2010数学学科分类:初级35Bxx、35J47;二次92 d25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信