{"title":"Some remarks on segregation of $k$ species in strongly competing systems","authors":"F. Lanzara, Eugenio Montefusco","doi":"10.4171/ifb/458","DOIUrl":null,"url":null,"abstract":"Spatial segregation occurs in population dynamics when k species interact in a highly competitive way. As a model for the study of this phenomenon, we consider the competitiondiffusion system of k differential equations −∆ui(x) = −μui(x) ∑ j 6=i uj(x) i = 1, ..., k in a domain D with appropriate boundary conditions. Any ui represents a population density and the parameter μ determines the interaction strength between the populations. The purpose of this paper is to study the geometry of the limiting configuration as μ −→ +∞ on a planar domain for any number of species. If k is even we show that some limiting configurations are strictly connected to the solution of a Dirichlet problem for the Laplace equation. 2010 Mathematics Subject Classification: Primary 35Bxx, 35J47; Secondary 92D25.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"60 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Spatial segregation occurs in population dynamics when k species interact in a highly competitive way. As a model for the study of this phenomenon, we consider the competitiondiffusion system of k differential equations −∆ui(x) = −μui(x) ∑ j 6=i uj(x) i = 1, ..., k in a domain D with appropriate boundary conditions. Any ui represents a population density and the parameter μ determines the interaction strength between the populations. The purpose of this paper is to study the geometry of the limiting configuration as μ −→ +∞ on a planar domain for any number of species. If k is even we show that some limiting configurations are strictly connected to the solution of a Dirichlet problem for the Laplace equation. 2010 Mathematics Subject Classification: Primary 35Bxx, 35J47; Secondary 92D25.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.