Radio-Frequency Multiply-and-Accumulate Operations with Spintronic Synapses

N. Leroux, Danijela Marković, Erwann Martin, Teodora Petrisor, D. Querlioz, A. Mizrahi, J. Grollier
{"title":"Radio-Frequency Multiply-and-Accumulate Operations with Spintronic Synapses","authors":"N. Leroux, Danijela Marković, Erwann Martin, Teodora Petrisor, D. Querlioz, A. Mizrahi, J. Grollier","doi":"10.1103/PHYSREVAPPLIED.15.034067","DOIUrl":null,"url":null,"abstract":"Exploiting the physics of nanoelectronic devices is a major lead for implementing compact, fast, and energy efficient artificial intelligence. In this work, we propose an original road in this direction, where assemblies of spintronic resonators used as artificial synapses can classify an-alogue radio-frequency signals directly without digitalization. The resonators convert the ra-dio-frequency input signals into direct voltages through the spin-diode effect. In the process, they multiply the input signals by a synaptic weight, which depends on their resonance fre-quency. We demonstrate through physical simulations with parameters extracted from exper-imental devices that frequency-multiplexed assemblies of resonators implement the corner-stone operation of artificial neural networks, the Multiply-And-Accumulate (MAC), directly on microwave inputs. The results show that even with a non-ideal realistic model, the outputs obtained with our architecture remain comparable to that of a traditional MAC operation. Us-ing a conventional machine learning framework augmented with equations describing the physics of spintronic resonators, we train a single layer neural network to classify radio-fre-quency signals encoding 8x8 pixel handwritten digits pictures. The spintronic neural network recognizes the digits with an accuracy of 99.96 %, equivalent to purely software neural net-works. This MAC implementation offers a promising solution for fast, low-power radio-fre-quency classification applications, and a new building block for spintronic deep neural net-works.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.034067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Exploiting the physics of nanoelectronic devices is a major lead for implementing compact, fast, and energy efficient artificial intelligence. In this work, we propose an original road in this direction, where assemblies of spintronic resonators used as artificial synapses can classify an-alogue radio-frequency signals directly without digitalization. The resonators convert the ra-dio-frequency input signals into direct voltages through the spin-diode effect. In the process, they multiply the input signals by a synaptic weight, which depends on their resonance fre-quency. We demonstrate through physical simulations with parameters extracted from exper-imental devices that frequency-multiplexed assemblies of resonators implement the corner-stone operation of artificial neural networks, the Multiply-And-Accumulate (MAC), directly on microwave inputs. The results show that even with a non-ideal realistic model, the outputs obtained with our architecture remain comparable to that of a traditional MAC operation. Us-ing a conventional machine learning framework augmented with equations describing the physics of spintronic resonators, we train a single layer neural network to classify radio-fre-quency signals encoding 8x8 pixel handwritten digits pictures. The spintronic neural network recognizes the digits with an accuracy of 99.96 %, equivalent to purely software neural net-works. This MAC implementation offers a promising solution for fast, low-power radio-fre-quency classification applications, and a new building block for spintronic deep neural net-works.
自旋电子突触的射频乘法和累加运算
利用纳米电子器件的物理特性是实现紧凑、快速和节能的人工智能的主要途径。在这项工作中,我们在这个方向上提出了一条原创的道路,其中自旋电子谐振器组件用作人工突触,可以直接对模拟射频信号进行分类,而无需数字化。谐振器通过自旋二极管效应将射频输入信号转换成直流电压。在这个过程中,他们将输入信号乘以突触权重,这取决于它们的共振频率。我们通过从实验设备中提取参数的物理模拟证明,频率复用的谐振器组件直接在微波输入上实现了人工神经网络的基石操作,即乘法和累加(MAC)。结果表明,即使在非理想的现实模型下,我们的架构所获得的输出仍然与传统的MAC操作相当。我们使用传统的机器学习框架和描述自旋电子谐振器物理特性的方程,训练单层神经网络对编码8x8像素手写数字图像的射频信号进行分类。自旋电子神经网络对数字的识别准确率达到99.96%,相当于单纯的软件神经网络。该MAC实现为快速、低功耗射频分类应用提供了一个有前途的解决方案,并为自旋电子深度神经网络提供了一个新的构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信