Cationic species as dopants for organic semiconductors

G. Huseynov
{"title":"Cationic species as dopants for organic semiconductors","authors":"G. Huseynov","doi":"10.15406/mseij.2019.03.00089","DOIUrl":null,"url":null,"abstract":"Organic semiconductors (OSCs) are the potential key materials for future flexible electronics due to their outstanding mechanical and optoelectronic properties1,2 Electronic devices such as organic light emitting diodes have already shown successful progress for flat panel displays, and application of OSCs is gradually expanding to various fields of electronics.1–3 However, OSCs still lag behind inorganic ones due to their poor electrical properties including low charge carrier mobility and conductivity as well as device stability issues.4–7 In order to overcome these issues, several approaches have been developed one of which is doping.5 Doping is one of the most effective methods to improve electrical properties of OSCs through increasing their charge carrier density and mobility.2,8–11 However, the doping of OSCs is different from the doping of inorganic ones. Unlike the latter, doping in organic electronics does not assume the replacement of a host lattice atom by an impurity atom. It is rather a simple charge transfer between two molecules.2,8,9,12–14 A significant number of research groups have reported different kinds of dopants for OSCs. In this review, a summary of the dopants, namely cationic species that can be applied as both pand n-type dopants, is introduced. Cationic dyes as dopants for organic molecules","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2019.03.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Organic semiconductors (OSCs) are the potential key materials for future flexible electronics due to their outstanding mechanical and optoelectronic properties1,2 Electronic devices such as organic light emitting diodes have already shown successful progress for flat panel displays, and application of OSCs is gradually expanding to various fields of electronics.1–3 However, OSCs still lag behind inorganic ones due to their poor electrical properties including low charge carrier mobility and conductivity as well as device stability issues.4–7 In order to overcome these issues, several approaches have been developed one of which is doping.5 Doping is one of the most effective methods to improve electrical properties of OSCs through increasing their charge carrier density and mobility.2,8–11 However, the doping of OSCs is different from the doping of inorganic ones. Unlike the latter, doping in organic electronics does not assume the replacement of a host lattice atom by an impurity atom. It is rather a simple charge transfer between two molecules.2,8,9,12–14 A significant number of research groups have reported different kinds of dopants for OSCs. In this review, a summary of the dopants, namely cationic species that can be applied as both pand n-type dopants, is introduced. Cationic dyes as dopants for organic molecules
有机半导体的阳离子掺杂剂
有机半导体(OSCs)由于其优异的机械和光电性能,是未来柔性电子潜在的关键材料1,2。有机发光二极管等电子器件在平板显示器上已经取得了成功的进展,OSCs的应用正在逐步扩展到电子的各个领域。1-3然而,OSCs仍然落后于无机OSCs,因为它们的电学性能差,包括低载流子迁移率和导电性以及器件稳定性问题。为了克服这些问题,已经开发了几种方法,其中之一就是使用兴奋剂掺杂是提高OSCs载流子密度和迁移率,改善其电学性能的最有效方法之一。2,8 - 11然而,OSCs的掺杂与无机OSCs的掺杂是不同的。与后者不同的是,有机电子学中的掺杂并不假设主晶格原子被杂质原子取代。这是两个分子之间非常简单的电荷转移。2,8,9,12 - 14许多研究小组已经报道了不同种类的OSCs掺杂剂。本文综述了掺杂剂的研究现状,即既可作为p型掺杂剂又可作为n型掺杂剂的阳离子掺杂剂。阳离子染料作为有机分子的掺杂剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信