Dynamics of an Evaporating Drop Migrating in a Poiseuille Flow

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Anubhav Dubey, K. Sahu, Gautam Biswas
{"title":"Dynamics of an Evaporating Drop Migrating in a Poiseuille Flow","authors":"Anubhav Dubey, K. Sahu, Gautam Biswas","doi":"10.1115/1.4063154","DOIUrl":null,"url":null,"abstract":"\n The evaporation of a liquid drop of initial diameter (Ddrop) migrating in a tube of diameter (D0) is investigated using the coupled level set and volume of fluid (CLSVOF) method focusing on determining the heat and mass transfer coefficients for a deforming drop. A robust phase change model is developed using an embedded boundary method under a finite difference framework to handle vaporizing flows. The model is extensively validated through simulations of benchmark problems such as arbitrary evaporation of a static drop and reproduction of psychrometric data. The results show that the Sherwood number (Sh) and the Nusselt number (Nu) reach a steady value after an initial transient period for the drop subjected to Hagen-Poiseuille flow. A parametric study is conducted to investigate the effect of drop deformation on the rate of evaporation. It is observed that Stefan flow due to evaporation has a negligible impact on the drop deformation dynamics. We also observed that, for different values of Ddrop/D0, the Sh follows a linear correlation with Re1/2Sc1/3.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evaporation of a liquid drop of initial diameter (Ddrop) migrating in a tube of diameter (D0) is investigated using the coupled level set and volume of fluid (CLSVOF) method focusing on determining the heat and mass transfer coefficients for a deforming drop. A robust phase change model is developed using an embedded boundary method under a finite difference framework to handle vaporizing flows. The model is extensively validated through simulations of benchmark problems such as arbitrary evaporation of a static drop and reproduction of psychrometric data. The results show that the Sherwood number (Sh) and the Nusselt number (Nu) reach a steady value after an initial transient period for the drop subjected to Hagen-Poiseuille flow. A parametric study is conducted to investigate the effect of drop deformation on the rate of evaporation. It is observed that Stefan flow due to evaporation has a negligible impact on the drop deformation dynamics. We also observed that, for different values of Ddrop/D0, the Sh follows a linear correlation with Re1/2Sc1/3.
泊泽维尔流中蒸发液滴迁移的动力学
采用水平集与流体体积耦合(CLSVOF)方法,研究了初始直径液滴(Ddrop)在直径为D0的管内迁移时的蒸发过程,重点确定了变形液滴的传热传质系数。在有限差分框架下,采用嵌入边界法建立了处理汽化流动的鲁棒相变模型。该模型通过对基准问题的模拟得到了广泛的验证,例如静态液滴的任意蒸发和湿度测量数据的再现。结果表明,水滴在hageno - poiseuille流作用下经过一段初始瞬态后,其Sherwood数(Sh)和Nusselt数(Nu)达到一个稳定值。对液滴变形对蒸发速率的影响进行了参数化研究。观察到蒸发引起的斯特凡流动对液滴变形动力学的影响可以忽略不计。我们还观察到,对于不同的Ddrop/D0值,Sh与Re1/2Sc1/3呈线性相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信