Junqi Luo, Liucun Zhu, Hongbing Zhu, W. Chien, Jiahai Liang
{"title":"A New Approach for the 10.7-cm Solar Radio Flux Forecasting: Based on Empirical Mode Decomposition and LSTM","authors":"Junqi Luo, Liucun Zhu, Hongbing Zhu, W. Chien, Jiahai Liang","doi":"10.2991/ijcis.d.210602.001","DOIUrl":null,"url":null,"abstract":"The daily 10.7-cm Solar Radio Flux (F10.7) data is a time series with highly volatile. The accurate prediction of F10.7 has a great significance in the fields of aerospace and meteorology. At present, the prediction of F10.7 is mainly carried out by linear models, nonlinearmodels, or a combination of the two. The combinationmodel is a promising strategy, which attempts to benefit from the strength of both. This paper proposes an Empirical Mode Decomposition (EMD) -Long Short-Term Memory Neural Network (LSTMNN) hybrid method, which is assembled by a particular frame, namely EMD–LSTM. The original dataset of F10.7 is firstly processed by EMD and decomposed into a series of components with different frequency characteristics. Then the output values of EMD are respectively fed to a developed LSTM model to acquire the predicted values of each component. The final forecasting values are obtained after a procedure of information reconstruction. The evaluation is undertaken by some statistical evaluation indexes in the cases of 1-27 days ahead and different years. Experimental results show that the proposed method gives superior accuracy as compared with benchmarkmodels, including other isolated algorithms and hybrid methods.","PeriodicalId":13602,"journal":{"name":"Int. J. Comput. Intell. Syst.","volume":"146 1","pages":"1742-1752"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijcis.d.210602.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The daily 10.7-cm Solar Radio Flux (F10.7) data is a time series with highly volatile. The accurate prediction of F10.7 has a great significance in the fields of aerospace and meteorology. At present, the prediction of F10.7 is mainly carried out by linear models, nonlinearmodels, or a combination of the two. The combinationmodel is a promising strategy, which attempts to benefit from the strength of both. This paper proposes an Empirical Mode Decomposition (EMD) -Long Short-Term Memory Neural Network (LSTMNN) hybrid method, which is assembled by a particular frame, namely EMD–LSTM. The original dataset of F10.7 is firstly processed by EMD and decomposed into a series of components with different frequency characteristics. Then the output values of EMD are respectively fed to a developed LSTM model to acquire the predicted values of each component. The final forecasting values are obtained after a procedure of information reconstruction. The evaluation is undertaken by some statistical evaluation indexes in the cases of 1-27 days ahead and different years. Experimental results show that the proposed method gives superior accuracy as compared with benchmarkmodels, including other isolated algorithms and hybrid methods.