A New Approach for the 10.7-cm Solar Radio Flux Forecasting: Based on Empirical Mode Decomposition and LSTM

Junqi Luo, Liucun Zhu, Hongbing Zhu, W. Chien, Jiahai Liang
{"title":"A New Approach for the 10.7-cm Solar Radio Flux Forecasting: Based on Empirical Mode Decomposition and LSTM","authors":"Junqi Luo, Liucun Zhu, Hongbing Zhu, W. Chien, Jiahai Liang","doi":"10.2991/ijcis.d.210602.001","DOIUrl":null,"url":null,"abstract":"The daily 10.7-cm Solar Radio Flux (F10.7) data is a time series with highly volatile. The accurate prediction of F10.7 has a great significance in the fields of aerospace and meteorology. At present, the prediction of F10.7 is mainly carried out by linear models, nonlinearmodels, or a combination of the two. The combinationmodel is a promising strategy, which attempts to benefit from the strength of both. This paper proposes an Empirical Mode Decomposition (EMD) -Long Short-Term Memory Neural Network (LSTMNN) hybrid method, which is assembled by a particular frame, namely EMD–LSTM. The original dataset of F10.7 is firstly processed by EMD and decomposed into a series of components with different frequency characteristics. Then the output values of EMD are respectively fed to a developed LSTM model to acquire the predicted values of each component. The final forecasting values are obtained after a procedure of information reconstruction. The evaluation is undertaken by some statistical evaluation indexes in the cases of 1-27 days ahead and different years. Experimental results show that the proposed method gives superior accuracy as compared with benchmarkmodels, including other isolated algorithms and hybrid methods.","PeriodicalId":13602,"journal":{"name":"Int. J. Comput. Intell. Syst.","volume":"146 1","pages":"1742-1752"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijcis.d.210602.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The daily 10.7-cm Solar Radio Flux (F10.7) data is a time series with highly volatile. The accurate prediction of F10.7 has a great significance in the fields of aerospace and meteorology. At present, the prediction of F10.7 is mainly carried out by linear models, nonlinearmodels, or a combination of the two. The combinationmodel is a promising strategy, which attempts to benefit from the strength of both. This paper proposes an Empirical Mode Decomposition (EMD) -Long Short-Term Memory Neural Network (LSTMNN) hybrid method, which is assembled by a particular frame, namely EMD–LSTM. The original dataset of F10.7 is firstly processed by EMD and decomposed into a series of components with different frequency characteristics. Then the output values of EMD are respectively fed to a developed LSTM model to acquire the predicted values of each component. The final forecasting values are obtained after a procedure of information reconstruction. The evaluation is undertaken by some statistical evaluation indexes in the cases of 1-27 days ahead and different years. Experimental results show that the proposed method gives superior accuracy as compared with benchmarkmodels, including other isolated algorithms and hybrid methods.
基于经验模态分解和LSTM的10.7 cm太阳射电通量预报新方法
每日10.7 cm太阳射电通量(F10.7)数据是一个高度不稳定的时间序列。准确预报F10.7在航空航天和气象领域具有重要意义。目前对F10.7的预测主要采用线性模型、非线性模型或两者的结合。合并模式是一种很有前途的策略,它试图从两者的优势中获益。本文提出了一种经验模态分解(EMD)长短期记忆神经网络(LSTMNN)混合方法,该方法由特定框架组合而成,即EMD - lstm。首先对F10.7原始数据集进行EMD处理,将其分解为一系列具有不同频率特征的分量。然后将EMD的输出值分别输入到开发的LSTM模型中,获得各分量的预测值。最后的预测值是经过信息重构后得到的。采用提前1 ~ 27天及不同年份的统计评价指标进行评价。实验结果表明,与基准模型(包括其他孤立算法和混合方法)相比,该方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信