Quelques résultats nouveaux sur les méthodes de projection

Jean-Luc Guermond , Jie Shen
{"title":"Quelques résultats nouveaux sur les méthodes de projection","authors":"Jean-Luc Guermond ,&nbsp;Jie Shen","doi":"10.1016/S0764-4442(01)02157-7","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit fractional step projection methods for solving the Navier–Stokes equations. We study a variant of pressure-correction methods and introduce a new class of velocity-correction methods. We prove stability and <span><math><mtext>O</mtext><mtext>(δt</mtext><msup><mi></mi><mn>2</mn></msup><mtext>)</mtext></math></span> convergence in the L<sup>2</sup> norm of the velocity for both variants. We also prove <span><math><mtext>O</mtext><mtext>(δt</mtext><msup><mi></mi><mn>3/2</mn></msup><mtext>)</mtext></math></span> convergence in the H<sup>1</sup> norm of the velocity and the L<sup>2</sup> norm of the pressure. We show that the new family of projection methods can be related to a set of methods introduced in [4,3]. As a result, this Note provides the first rigorous proof of stability and convergence of the methods introduced in [4,3].</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1111-1116"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02157-7","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We revisit fractional step projection methods for solving the Navier–Stokes equations. We study a variant of pressure-correction methods and introduce a new class of velocity-correction methods. We prove stability and O(δt2) convergence in the L2 norm of the velocity for both variants. We also prove O(δt3/2) convergence in the H1 norm of the velocity and the L2 norm of the pressure. We show that the new family of projection methods can be related to a set of methods introduced in [4,3]. As a result, this Note provides the first rigorous proof of stability and convergence of the methods introduced in [4,3].

关于投影方法的一些新发现
我们重新讨论求解Navier-Stokes方程的分步投影方法。本文研究了压力校正方法的一种变体,并介绍了一类新的速度校正方法。我们证明了这两个变量在速度的L2范数下的稳定性和O(δt2)收敛性。我们还证明了O(δt3/2)收敛于速度的H1范数和压力的L2范数。我们证明了新的投影方法族可以与[4,3]中引入的一组方法相关。因此,本文首次严格证明了[4,3]中介绍的方法的稳定性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信