{"title":"Description explicite de la frontière de Poisson pour certains groupes de Lie résolubles connexes","authors":"Christophe Cuny","doi":"10.1016/S0764-4442(01)02121-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a connected solvable Lie group with abelian derived group and <em>μ</em> be a spread out probability measure on <em>G</em>. We give an explicit description of the Poisson boundary in terms of almost sure convergence of the right random walk of law <em>μ</em>. We characterize the Poisson boundary by an integral criterion for some matricial groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 741-744"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02121-8","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let G be a connected solvable Lie group with abelian derived group and μ be a spread out probability measure on G. We give an explicit description of the Poisson boundary in terms of almost sure convergence of the right random walk of law μ. We characterize the Poisson boundary by an integral criterion for some matricial groups.