{"title":"Compression of quantum multi-prover interactive proofs","authors":"Zhengfeng Ji","doi":"10.1145/3055399.3055441","DOIUrl":null,"url":null,"abstract":"We present a protocol that transforms any quantum multi-prover interactive proof into a nonlocal game in which questions consist of logarithmic number of bits and answers of constant number of bits. As a corollary, it follows that the promise problem corresponding to the approximation of the nonlocal value to inverse polynomial accuracy is complete for QMIP*, and therefore NEXP-hard. This establishes that nonlocal games are provably harder than classical games without any complexity theory assumptions. Our result also indicates that gap amplification for nonlocal games may be impossible in general and provides a negative evidence for the feasibility of the gap amplification approach to the multi-prover variant of the quantum PCP conjecture.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
We present a protocol that transforms any quantum multi-prover interactive proof into a nonlocal game in which questions consist of logarithmic number of bits and answers of constant number of bits. As a corollary, it follows that the promise problem corresponding to the approximation of the nonlocal value to inverse polynomial accuracy is complete for QMIP*, and therefore NEXP-hard. This establishes that nonlocal games are provably harder than classical games without any complexity theory assumptions. Our result also indicates that gap amplification for nonlocal games may be impossible in general and provides a negative evidence for the feasibility of the gap amplification approach to the multi-prover variant of the quantum PCP conjecture.