Partial regularity of solution to generalized Navier-Stokes problem

V. Mácha
{"title":"Partial regularity of solution to generalized Navier-Stokes problem","authors":"V. Mácha","doi":"10.2478/s11533-014-0427-9","DOIUrl":null,"url":null,"abstract":"In the presented work, we study the regularity of solutions to the generalized Navier-Stokes problem up to a C2 boundary in dimensions two and three. The point of our generalization is an assumption that a deviatoric part of a stress tensor depends on a shear rate and on a pressure. We focus on estimates of the Hausdorff measure of a singular set which is defined as a complement of a set where a solution is Hölder continuous. We use so-called indirect approach to show partial regularity, for dimension 2 we get even an empty set of singular points.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"61 3 1","pages":"1460-1483"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0427-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the presented work, we study the regularity of solutions to the generalized Navier-Stokes problem up to a C2 boundary in dimensions two and three. The point of our generalization is an assumption that a deviatoric part of a stress tensor depends on a shear rate and on a pressure. We focus on estimates of the Hausdorff measure of a singular set which is defined as a complement of a set where a solution is Hölder continuous. We use so-called indirect approach to show partial regularity, for dimension 2 we get even an empty set of singular points.
广义Navier-Stokes问题解的部分正则性
在本文中,我们研究了广义Navier-Stokes问题在二维和三维C2边界上的解的正则性。我们推广的要点是一个假设,即应力张量的偏差部分取决于剪切速率和压力。我们关注奇异集的豪斯多夫测度的估计,奇异集被定义为解为Hölder连续的集合的补。我们使用所谓的间接方法来显示部分正则性,对于维2我们甚至得到一个奇异点的空集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信