{"title":"High Efficiency Membrane Technology in Microfluidic Systems","authors":"Yang Yuan, Zhao Cui, Hui Jia, Jie Wang","doi":"10.1080/15422119.2021.2024570","DOIUrl":null,"url":null,"abstract":"ABSTRACT The combination of membranes and microfluidic systems has been applied in areas such as bioscience, environmental and analytical chemistry, and in the past time research into the integration of membrane mass transfer control functions into microfluidic devices has shown a significant growth trend. The multiple uses of membrane-based microfluidic systems have been demonstrated in published reports. The aim of this paper is to provide an overview of the development process in this field, starting with the basic terminology of microfluidic and membrane processes and outlining membrane-based microfluidic platforms that combine the two, followed by a classification of membrane integration on a chip based on the preparation methods used to combine the two. Three membrane functions that membranes can perform in microfluidic systems are then discussed; they are separation and enrichment of substances, immobilization and culturing of cells, and fluid control of pumps and valves. Finally, several possible research directions and related issues for membrane-based microfluidic platforms are presented, providing a deeper reference for future research combining membranes with microfluidic platforms.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":"14 1","pages":"545 - 562"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2021.2024570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT The combination of membranes and microfluidic systems has been applied in areas such as bioscience, environmental and analytical chemistry, and in the past time research into the integration of membrane mass transfer control functions into microfluidic devices has shown a significant growth trend. The multiple uses of membrane-based microfluidic systems have been demonstrated in published reports. The aim of this paper is to provide an overview of the development process in this field, starting with the basic terminology of microfluidic and membrane processes and outlining membrane-based microfluidic platforms that combine the two, followed by a classification of membrane integration on a chip based on the preparation methods used to combine the two. Three membrane functions that membranes can perform in microfluidic systems are then discussed; they are separation and enrichment of substances, immobilization and culturing of cells, and fluid control of pumps and valves. Finally, several possible research directions and related issues for membrane-based microfluidic platforms are presented, providing a deeper reference for future research combining membranes with microfluidic platforms.